专题五 图形折叠二.docx

上传人:b****5 文档编号:11759106 上传时间:2023-03-31 格式:DOCX 页数:15 大小:301.82KB
下载 相关 举报
专题五 图形折叠二.docx_第1页
第1页 / 共15页
专题五 图形折叠二.docx_第2页
第2页 / 共15页
专题五 图形折叠二.docx_第3页
第3页 / 共15页
专题五 图形折叠二.docx_第4页
第4页 / 共15页
专题五 图形折叠二.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

专题五 图形折叠二.docx

《专题五 图形折叠二.docx》由会员分享,可在线阅读,更多相关《专题五 图形折叠二.docx(15页珍藏版)》请在冰豆网上搜索。

专题五 图形折叠二.docx

专题五图形折叠二

折叠问题

折叠问题(对称问题)是近几年来中考出现频率较高的一类题型,学生往往由于对折叠的实质理解不够透彻,导致对这类中档问题失分严重。

本文试图通过对在初中数学中经常涉及到的几种折叠的典型问题的剖析,从中抽象出基本图形的基本规律,找到解决这类问题的常规方法。

其实对于折叠问题,我们要明白:

1、折叠问题(翻折变换)实质上就是轴对称变换.

2、折叠是一种对称变换,它属于轴对称.对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.

3、对于折叠较为复杂的问题可以实际操作图形的折叠,在画图时,画出折叠前后的图形,这样便于找到图形之间的数量关系和位置关系.

4、在矩形(纸片)折叠问题中,重合部分一般会是一个以折痕为底边的等腰三角形

5、利用折叠所得到的直角和相等的边或角,设要求的线段长为x,然后根据轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求解.

一、矩形中的折叠

1.将一张长方形纸片按如图的方式折叠,其中BC,BD为折痕,折叠后BG和BH在同一条直线上,∠CBD=度.

2.如图所示,一张矩形纸片沿BC折叠,顶点A落在点A′处,再过点A′折叠使折痕DE∥BC,若AB=4,AC=3,则△ADE的面积是.

3.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,得折痕DG,求AG的长.

4.把矩形纸片ABCD沿BE折叠,使得BA边与BC重合,然后再沿着BF折叠,使得折痕BE也与BC边重合,展开后如图所示,则∠DFB等于(  )

 

5.如图,沿矩形ABCD的对角线BD折叠,点C落在点E的位置,已知BC=8cm,AB=6cm,求折叠后重合部分的面积.

 

6.将一张矩形纸条ABCD按如图所示折叠,若折叠角∠FEC=64°,则∠1=度;△EFG的形状三角形.

 

7.如图,将矩形纸片ABCD按如下的顺序进行折叠:

对折,展平,得折痕EF(如图①);延CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图 ⑥).

(1)求图 ②中∠BCB′的大小;

(2)图⑥中的△GCC′是正三角形吗?

请说明理由.

 

8.如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为___________

9.

如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处,求四边形BCFE的面积

 

10.如图,将一个边长为1的正方形纸片ABCD折叠,使点B落在边AD上 不与A、D重合.MN为折痕,折叠后B’C’与DN交于P.

(1)连接BB’,那么BB’与MN的长度相等吗?

为什么?

(2)设BM=y,AB’=x,求y与x的函数关系式;

(3)猜想当B点落在什么位置上时,折叠起来的梯形MNCB’面积最小?

并验证你的猜想.

 

二、纸片中的折叠

11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于(  )

12.如图,将一宽为2cm的纸条,沿BC,使∠CAB=45°,则后重合部分的面积为

13.将宽2cm的长方形纸条成如图所示的形状,那么折痕PQ的长是

 

14.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是(  )

15.将一张长为70 cm的长方形纸片ABCD,沿对称轴EF折叠成如图的形状,若折叠后,AB与CD间的距离为60cm,则原纸片的宽AB是(  )

 

16.一根30cm、宽3cm的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了美观,希望折叠完成后纸条两端超出点P的长度相等,则最初折叠时,求MA的长

三、三角形中的折叠

17.如图,把Rt△ABC(∠C=90°),使A,B两点重合,得到折痕ED,再沿BE折叠,C点恰好与D点重合,则CE:

AE=_______

18.在△ABC中,已知AB=2a,∠A=30°,CD是AB边的中线,若将△ABC沿CD对折起来,折叠后两个小△ACD与△BCD重叠部分的面积恰好等于折叠前△ABC的面积的

(1)当中线CD等于a时,重叠部分的面积等于;

(2)有如下结论(不在“CD等于a”的限制条件下):

①AC边的长可以等于a;②折叠前的△ABC的面积可以等于 

;③折叠后,以A、B为端点的线段AB与中线CD平行且相等.其中,结论正确(把你认为正确结论的代号都填上,若认为都不正确填“无”).

 

19.在△ABC中,已知∠A=80°,∠C=30°,现把△CDE沿DE进行不同的折叠得△C′DE,对折叠后产生的夹角进行探究:

(1)如图

(1)把△CDE沿DE折叠在四边形ADEB内,则求∠1+∠2的和;

(2)如图

(2)把△CDE沿DE折叠覆盖∠A,则求∠1+∠2的和;

(3)如图(3)把△CDE沿DE斜向上折叠,探求∠1、∠2、∠C的关系.

 

20.观察与发现:

将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);在第一次折叠的基础上第二次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?

请说明理由.

实践与运用:

 

(1)将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D’处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.

 

(2)将矩形纸片ABCD 按如下步骤操作:

将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小.

 

21.直角三角形纸片ABC中,∠ACB=90°,AC≤BC,如图,将纸片沿某条直线折叠,使点A落在直角边BC上,记落点为D,设折痕与AB、AC边分别交于点E、点F.

探究:

如果折叠后的△CDF与△BDE均为等腰三角形,那么纸片中∠B的度数是多少?

写出你的计算过程,并画出符合条件的后的图形.

 

22.下列图案给出了折叠一个直角边长为2的等腰直角三角形纸片(图1)的全过程:

首先对折,如图2,折痕CD交AB于点D;打开后,过点D任意折叠,使折痕DE交BC于点E,如图3;打开后,如图4;再沿AE折叠,如图5;打开后,折痕如图6.则折痕DE和AE长度的和的最小值是(  )

 

23.小华将一条1(如图1),沿它对称轴折叠1次后得到(如图),再将图沿它对称轴折叠后得到(如图3),则图3中一条腰长;同上操作,若小华连续将图1折叠n次后所得到(如图n+1)一条腰长为多少?

 

24.如图,矩形纸片ABCD中,AB=

,BC=

.第一次将纸片折叠,使点B与点D重合,折痕与BD交于点O1;O1D的中点为D1,第二次将纸片折叠使点B与点D1重合,折痕与BD交于点O2;设O2D1的中点为D2,第三次将纸片折叠使点B与点D2重合,折痕与BD交于点O3,….按上述方法,第n次折叠后的折痕与BD交于点On,则BO1=,BOn=

 

25.如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交于点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设Pn-1Dn-2的中点为Dn-1,第n次纸片折叠,使A与点Dn-1重合,折痕与AD交于点Pn(n>2),则AP6长(  )

 

26.阅读理解

如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.

小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:

如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:

如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.

探究发现

(1)△ABC中,∠B=2∠C,经过两次,∠BAC是不是△ABC的好角?

(填“是”或“不是”).

(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:

若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为.∠B=n∠C

应用提升

(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.

请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.

 

27.我们知道:

任意的三角形纸片可通过如图①所示的方法折叠得到一个矩形.

(1)实践:

将图②中的正方形纸片通过适当的方法折叠成一个矩形(在图②中画图说明).

(2)探究:

任意的四边形纸片是否都能通过适当的方法折叠成一个矩形?

若能,直接在图③中画图说明;若不能,则四边形至少应具备什么条件才行?

并画图说明.(要求:

画图应体现折叠过程,用虚线表示折痕,用箭头表示方向,后图形中既无缝隙又无重叠部分)

 

28.如图,双曲线y=

(x>0)经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴,将△ABC沿AC翻折后得到△AB'C,B'点落在OA上,则四边形OABC的面积是多少?

 

29.已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.

(1)若折叠后使点B与点A重合,求点C的坐标;

(2)若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式,并确定y的取值范围;

(3)若折叠后点B落在边OA上的点为B″,且使B″D∥OB,求此时点C的坐标.

 

四、圆中的折叠

30.如图,正方形ABCD的边长为2,⊙O的直径为AD,将正方形的BC边沿EC折叠,点B落在圆上的F点,求BE的长

31.如图,将半径为8的⊙O沿AB折叠,弧AB恰好经过与AB垂直的半径OC的中点D,则折痕AB长为(  )

 

32.如图,将弧BC沿弦BC折叠交直径AB于点D,若AD=5,DB=7,则BC的长是多少?

 

33.已知如图:

⊙O的半径为8cm,把弧AmB沿AB折叠使弧AmB经过圆心O,再把弧AOB沿CD折叠,使弧COD经过AB的中点E,则折线CD的长为(  )

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1