高中考试资料高中物理电学光学热学实验总结.docx

上传人:b****5 文档编号:11735915 上传时间:2023-03-31 格式:DOCX 页数:22 大小:339.07KB
下载 相关 举报
高中考试资料高中物理电学光学热学实验总结.docx_第1页
第1页 / 共22页
高中考试资料高中物理电学光学热学实验总结.docx_第2页
第2页 / 共22页
高中考试资料高中物理电学光学热学实验总结.docx_第3页
第3页 / 共22页
高中考试资料高中物理电学光学热学实验总结.docx_第4页
第4页 / 共22页
高中考试资料高中物理电学光学热学实验总结.docx_第5页
第5页 / 共22页
点击查看更多>>
下载资源
资源描述

高中考试资料高中物理电学光学热学实验总结.docx

《高中考试资料高中物理电学光学热学实验总结.docx》由会员分享,可在线阅读,更多相关《高中考试资料高中物理电学光学热学实验总结.docx(22页珍藏版)》请在冰豆网上搜索。

高中考试资料高中物理电学光学热学实验总结.docx

高中考试资料高中物理电学光学热学实验总结

电学实验总结

实验设计的基本思路

 

(一)电学实验中所用到的基本知识

在近年的电学实验中,电阻的测量(包括变形如电表内阻的测量)、测电源的电动势与内电阻是考查频率较高的实验。

它们所用到的原理公式为:

由此可见,对于电路中电压U及电流I的测量是实验的关键所在,但这两个量的直接测量和间接测量的方法却多种多样,在此往往也是高考试题的着力点之处。

因此复习中应熟练掌握基本实验知识及方法,做到以不变应万变。

1.电路设计原则:

正确地选择仪器和设计电路的问题,有一定的灵活性,解决时应掌握和遵循一些基本的原则,即“安全性”、“方便性”、“精确性”原则,兼顾“误差小”、“仪器少”、“耗电少”等各方面因素综合考虑,灵活运用。

⑴正确性:

实验原理所依据的原理应当符合物理学的基本原理。

⑵安全性:

实验方案的实施要安全可靠,实施过程中不应对仪器及人身造成危害。

要注意到各种电表均有量程、电阻均有最大允许电流和最大功率,电源也有最大允许电流,不能烧坏仪器。

⑶方便性:

实验应当便于操作,便于读数,便于进行数据处理。

⑷精确性:

在实验方案、仪器、仪器量程的选择上,应使实验误差尽可能的小。

2.电学实验仪器的选择:

⑴根据不使电表受损和尽量减少误差的原则选择电表。

首先保证流过电流表的电流和加在电压表上的电压均不超过使用量程,然后合理选择量程,务必使指针有较大偏转(一般要大于满偏度的1/3),以减少测读误差。

⑵根据电路中可能出现的电流或电压范围选择滑动变阻器,注意流过滑动变阻器的电流不超过它的额定值,对大阻值的变阻器,如果是滑动头稍有移动,使电流、电压有很大变化的,不宜采用。

⑶应根据实验的基本要求来选择仪器,对于这种情况,只有熟悉实验原理,才能作出恰当的选择。

总之,最优选择的原则是:

方法误差尽可能小;间接测定值尽可能有较多的有效数字位数,直接测定值的测量使误差尽可能小,且不超过仪表的量程;实现较大范围的灵敏调节;在大功率装置(电路)中尽可能节省能量;在小功率电路里,在不超过用电器额定值的前提下,适当提高电流、电压值,以提高测试的准确度。

3.测量电路的选择

1.伏安法测电阻

(1)原理:

部分电路的欧姆定律。

(2)电流表外接法,如图4所示。

误差分析:

 

产生误差的原因:

电压表V分流。

适用于测小阻值电阻,即Rx远小于Rv时。

](3)电流表内接法,如图5所示。

误差分析:

产生误差的原因:

电流表A分压。

适用于测大阻值电阻,即Rx远大于RA时。

(4)内、外接法的选用原则

①计算临界电阻:

若Rx>R0,待测电阻为大电阻,用内接法

若Rx

即大电阻,内接法;小电阻,外接法。

大内小外。

方法二:

均不知的情况下,可采用试触法。

如图所示,分别将a端与b、c接触,如果前后两次电流表示数比电压表示数变化明显,说明电压表分流作用大,应采用内接法;如果前后两次电压表示数比电流表示数变化明显,说明电流表分压作用大,应采用外接法。

 

⑵滑动变阻器的分压、限流接法:

为了改变测量电路(待测电阻)两端的电压(或通过测量电路的电流),常使滑动变阻器与电源连接作为控制电路,滑动变阻器在电路中主要有两种连接方式:

如图(甲)为滑动变阻器的限流式接法,

为待测电阻。

它的接线方式是电源、滑动变阻器与待测电阻三者串联。

对待测电阻供电电压的最大调节范围是:

是待测电阻,R是滑动变阻器的总电阻,不计电源内阻)。

如图(乙)是滑动变阻器的分压式接法。

接线方式是电源与滑动变阻器组成闭合电路,而被测电路与滑动变阻器的一部分电阻并联,该接法对待测电阻供电电压的调节范围是:

(不计电源内阻时)。

选取接法的原则:

①要求负载上电压或电流变化范围大,且从零开始连续可调,须用分压式接法。

②负载电阻Rx远大于滑动变阻器总电阻R时,须用分压式接法,此时若采用限流式接法对电路基本起不到调节作用。

③采用限流电路时,电路中的最小电流(电压)仍超过电流表的量程或超过用电器的额定电流(电压)时,应采用变阻器的分压式接法。

④负载电阻的阻值Rx小于滑动变阻器的总电阻R或相差不大,并且电压表、电流表示数变化不要求从零开始起调,可用限流式接法。

⑤两种电路均可使用时应优先用限流式接法,因为限流电路结构简单,总功率较小。

4.实物图的连接:

实物图连线应掌握基本方法和注意事项。

⑴注意事项:

①连接电表应注意量程选用正确,正、负接线柱不要接错。

②各导线都应接在接线柱上,不应在导线中间出现分叉。

③对于滑动变阻器的连接,要搞清楚接入电路的是哪一部分电阻,在接线时要特别注意不能将线接到滑动触头上。

⑵基本方法:

①画出实验电路图。

②分析各元件连接方式,明确电流表与电压表的量程。

③画线连接各元件。

(用铅笔画线,以便改错)连线方式应是单线连接,连线顺序应先画串联电路,再画并联电路。

一般先从电源正极开始,到电键,再到滑动变阻器等。

按顺序以单线连接方式将干路中要串联的元件依次串联起来;然后连接支路将要并联的元件再并联到电路中去。

连接完毕,应进行检查,检查电路也应按照连线的方法和顺序。

(二)定值电阻的测量方法

1.欧姆表测量:

最直接测电阻的仪表。

但是一般用欧姆表测量只能进行粗测,为下一步的测量提供一个参考依据。

用欧姆表可以测量白炽灯泡的冷电阻。

2.替代法:

替代法的测量思路是等效的思想,可以是利用电流等效、也可以是利用电压等效。

替代法测量电阻精度高,不需要计算,方法简单,但必须有可调的标准电阻(一般给定的仪器中要有电阻箱)。

3.伏安法:

伏安法的测量依据是欧姆定律(包括部分电路欧姆定律和全电路欧姆定律),需要的基本测量仪器是电压表和电流表,当只有一个电表(或给定的电表不能满足要求时),可以用标准电阻(电阻箱或一个定值电阻)代替;当电表的内阻已知时,根据欧姆定律I=U/R电压表同时可以当电流表使用,同样电流表也可以当电压表用。

4.伏安法拓展:

某些问题中,因实验器材不具备(缺电流表或电压表),或因实验条件限制,或因实验精度不允许而不能用“伏安法”。

这时我们就得依据问题的具体条件和要求重新选择实验原理,用“伏安法”的替代形式——“比较法”来设计实验方案。

⑴利用已知内阻的电压表:

利用“伏伏”法测定值电阻的阻值

⑵利用已知内阻的电流表:

利用“安安”法测定值电阻的阻值

⑶电压表、电流表混合用

(三)电表内阻的测量方法

1.互测法:

⑴电流表、电压表各一只,可以测量它们的内阻:

 

⑵两只同种电表,若知道一只的内阻,就可以测另一只的内阻:

 

⑶两只同种电表内阻都未知,则需要一只电阻箱才能测定电表的内阻:

 

2.替代法:

 

3、半值法(半偏法)。

半值法是上面比例法的一个特例,测电流表内阻和测电压表内阻都可以用半值法,电路图如图10-15所示。

甲图实验时先断开开关S’,闭合S,调整滑动变阻器R01(限流法连接),使电流表A满度(即指针指满刻度处);再闭合S’,调整电阻箱R1,使电流表A的指针恰好指到半满度处,读出此时电阻箱的阻值R,则电流表A的电阻rA=R。

(测量结果偏小)

乙图实验时先闭合开关S’及S,调整滑动变阻器R02(分压法连接),使电压表V满度;再断开S’,调整电阻箱R2,使电压表V的指针恰好指到半满度处,读出此时电阻箱的阻值R,则电压表V的电阻rV=R。

(测量结果偏大)

测电动势和内阻

(1)测量电路如图

(2)测量方法

第一、计算方法

测两组端电压U和电流I值,然后通过以下式子求解。

E=U1+I1r

E=U2+I2r

第二、作U——I图象方法

通过调节滑动变阻器,取得多组(U,I)值,然后在坐标中描点,连成直线

用图象处理问题,须注意以下几点:

①连直线的方法:

让尽可能多的点在直线上,直线两则分布的点的个数大致均匀偏离直线较远的点舍去。

②纵轴截距的含义:

电动势E

③横轴截距的含义:

短路电流I0

④斜率的含义:

电阻。

求解方法:

r=

或用直线上任意两点求解斜率的绝对值。

(3)实验误差分析

(1)偶然误差:

主要来源于电压表和电流表的读数以及作U—I图象时描点不很准确。

(2)系统误差:

系统误差来源于未计电压表分流,近似地将电流表的示数看作干路电流。

实际上电流表的示数比干路电流略小。

如果由实验得到的数据作出图中实线(a)所示的图象,那么考虑到电压表的分流后,得到的U—I图象应是图中的虚线(b),由此可见,按图所示的实验电路测出的电源电动势

,电源内电阻

说明:

①外电路短路时,电流表的示数(即干路电流的测量值)

等于干路电流的真实值,所以图中(a)、(b)两图线交于短路电流处。

②当路端电压(即电压表示数)为

时,由于电流表示数

小于干路电流

,所以(a)、(b)两图线出现了图中所示的差异。

(4)特殊方法

(一)即计算法:

画出各种电路图

(一个电流表和两个定值电阻)

(一个电流表及一个电压表和一个滑动变阻器)

(一个电压表和两个定值电阻)

光学实验

一、测定玻璃砖的折射率

【实验目的】:

测定玻璃的折射率。

【实验原理】:

用插针法确定光路,找出和入射线相应的折射线;用量角器测出入射角i和折射角r;根据折射定律计算出玻璃的折射率n=

【实验器材】:

玻璃砖、白纸三张、木板、大头针四枚、图钉四枚、量角器、三角板(或直尺)、铅笔。

【实验步骤】:

①把白纸用图钉钉在木板上。

②在白纸上画一条直线aa'作为界面,画一条线段AO作为入射光线,并过O点画出界面aa'的法线NN',如图所示。

③把长方形的玻璃砖放在白纸上,使它的一个长边跟aa'对齐,并画出玻璃砖的另一个长边bb'。

④在AO线段上竖直地插上两枚大头针P1和P2。

⑤在玻璃砖的bb'一侧竖直地插上大头针P3,用眼睛观察调整视线,要使P3能同时挡住P1和P2的像。

⑥同样地在玻璃砖的bb'一侧再竖直地插上大头针P4,使P4能挡住P3本身和P1与P2的像。

⑦记下P3和P4的位置,移去玻璃砖和大头针,过P3和P4引直线O'B与bb'交于O'点,连接O与O',OO'就是玻璃砖内的折射光线的方向,入射角i=∠AON,折射角r=∠O'ON'。

⑧用量角器量出入射角i和折射角r的度数。

⑨从三角函数表中查出入射角和折射角的正弦值,记入自己设计的表格里。

⑩用上面的方法分别求出入射角是30°,45°,60°时的折射角,查出入射角和折射角的正弦值,把这些数据记在表格里。

【数据处理】

算出不同入射角时

的值,求出几次实验中所测

的平均值

【注意事项】:

1.玻璃砖应选用厚度、宽度较大的.2.大头针要插得竖直,且间隔要大些.3.入射角不宜过大或过小,一般在15°~75°之间.4.玻璃砖的折射面要画准,不能用玻璃砖界面代替直尺画界线.5.实验过程中,玻璃砖和白纸的相对位置不能改变.

【误差及分析】:

  ①入射光线、出射光线确定的准确性,要求入射侧、出射侧所插两枚大头针间距宜大点。

  ②测量入射角与折射角时的相对误差,故入射角不宜过小。

入射角也不宜过大,过大则反射光较强,出射光较弱。

二、用双缝干涉测光的波长

(一)目的

了解光波产生稳定的干涉现象的条件;观察双缝干涉图样;测定单色光的波长。

(二)原理

据双缝干涉条纹间距

得,波长

已知双缝间距d,再测出双缝到屏的距离L和条纹间距Δx,就可以求得光波的波长。

(三)器材

实验装置采用双缝干涉仪,它由各部分光学元件在光具座上组成,如图实18-1所示,各部分元件包括光源、滤光片、单缝、双缝、遮光筒、光屏。

 

(四)步骤

1.将光源和遮光筒安装在光具座上,调整光源的位置,使光源发出的光能平行地进入遮光筒并照亮光屏.

2.放置单缝和双缝,使缝相互平行,调整各部件的间距,观察白光的双缝干涉图样.

3.在光源和单缝间放置滤光片,使单一颜色的光通过后观察单色光的双缝干涉图样.

4.用米尺测出双缝到光屏的距离L,用测量头测出相邻的两条亮(或暗)条纹间的距离Δx.

5.利用表达式

求单色光的波长.

6.换用不同颜色的滤光片,观察干涉图样的异同,并求出相应的波长.

(五)注意事项

1.放置单缝和双缝时,必须使缝平行,并且双缝和单缝间的距离约为5~10cm.

2.要保证光源、滤光片、单缝、双缝、遮光筒和光屏的中心在同一条轴线上。

3.测量头的中心刻线要对应着亮(或暗)条纹的中心.

4.为减小实验误差,先测出n条亮(或暗)条纹中心间的距离a,则相邻两条亮(或暗)条纹间的距离

.

 

热学实验相关知识

一、分子运动论

1.物质是由大量分子组成的

2.分子永不停息地做无规则热运动

(1)分子永不停息做无规则热运动的实验事实:

扩散现象和布郎运动。

(2)布朗运动

布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。

布朗运动不是

分子本身的运动,但它间接地反映了液体(气体)分子的无规则运动。

(3)实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。

因为图中的每一段折线,是每隔30s时间观察到的微粒位置的连线,就是在这短短的30s内,小颗粒的运动也是极不规则的。

(4)布朗运动产生的原因

大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。

简言之:

液体(或气体)分子永不

停息的无规则运动是产生布朗运动的原因。

(5)影响布朗运动激烈程度的因素

固体微粒越小,温度越高,固体微粒周围的液体分子运动越不规则,对微粒碰

撞的不平衡性越强,布朗运动越激烈。

(6)能在液体(或气体)中做布朗运动的微粒都是很小的,一般数量级在,这种微粒肉眼是看不到的,必须借助于显微镜。

3.分子间存在着相互作用力

(1)分子间的引力和斥力同时存在,实际表现出来的分子力是分子引力和斥

力的合力。

分子间的引力和斥力只与分子间距离(相对位置)有关,与分子的运动状态无关。

(2)分子间的引力和斥力都随分子间的距离r的增大而减小,随分子间的距离r的减小而增大,但斥力的变化比引力的变化快。

(3)分子力F和距离r的关系如下图

4.物体的内能

(1)做热运动的分子具有的动能叫分子动能。

温度是物体分子热运动的平均动能的标志。

(2)由分子间相对位置决定的势能叫分子势能。

分子力做正功时分子势能减小;分子力作负功时分子势能增大。

当r=r0即分子处于平衡位置时分子势能最小。

不论r从r0增大还是减小,分子势能都将增大。

如果以分子间距离为无穷远时分子势能为零,则分子势能随分子间距离而变的图象如上图。

(3)物体中所有分子做热运动的动能和分子势能的总和叫做物体的内能。

物体的内能跟物体的温度和体积及物质的量都有关系,定质量的理想气体的内能只跟温度有关。

(4)内能与机械能:

运动形式不同,内能对应分子的热运动,机械能对于物体的机械运动。

物体的内能和机械能在一定条件下可以相互转化。

二、固体

1.晶体和非晶体

(1)在外形上,晶体具有确定的几何形状,而非晶体则没有。

(2)在物理性质上,晶体具有各向异性,而非晶体则是各向同性的。

(3)晶体具有确定的熔点,而非晶体没有确定的熔点。

(4)晶体和非晶体并不是绝对的,它们在一定条件下可以相互转化。

例如把晶体硫加热熔化(温度不超过300℃)后再倒进冷水中,会变成柔软的非晶体硫,再过一段时间又会转化为晶体硫。

2.多晶体和单晶体

单个的晶体颗粒是单晶体,由单晶体杂乱无章地组合在一起是多晶体。

多晶体具有各向同性。

3.晶体的各向异性及其微观解释

在物理性质上,晶体具有各向异性,而非晶体则是各向同性的。

通常所说的物理性质包括弹性、硬度、导热性能、导电性能、光的折射性能等。

晶体的各向异性是指晶体在不同方向上物理性质不同,也就是沿不同方向去测试晶体的物理性能时测量结果不同。

需要注意的是,晶体具有各向异性,并不是说每一种晶体都能在各物理性质上都表现出各向异性。

晶体内部结构的有规则性,在不同方向上物质微粒的排列情况不同导致晶体具有各向异性。

4.晶体与非晶体、单晶体与单晶体的比较

三、液体

1.液体的微观结构及物理特性

(1)从宏观看

因为液体介于气体和固体之间,所以液体既像固体具有一定的体积,不易压缩,又像气体没有形状,具有流动性。

(2)从微观看有如下特点

①液体分子密集在一起,具有体积不易压缩;

②分子间距接近固体分子,相互作用力很大;

③液体分子在很小的区域内有规则排列,此区域是暂时形成的,边界和大小随时改变,并且杂乱无章排列,因而液体表现出各向同性;

④液体分子的热运动虽然与固体分子类似,但无长期固定的平衡位置,可在液体中移动,因而显示出流动性,且扩散比固体快。

2.液体的表面张力

如果在液体表面任意画一条线,线两侧的液体之间的作用力是引力,它的作用是使液体面绷紧,所以叫液体的表面张力。

特别提醒:

(1)表面张力使液体自动收缩,由于有表面张力的作用,液体表面有收缩到最小的趋势,表面张力的方向跟液面相切。

(2)表面张力的形成原因是表面层(液体跟空气接触的一个薄层)中分子间距离大,分子间的相互作用表现为引力。

(3)表面张力的大小除了跟边界线长度有关外,还跟液体的种类、温度有关。

四、液晶

1.液晶的物理性质

液晶具有液体的流动性,又具有晶体的光学各向异性。

2.液晶分子的排列特点

液晶分子的位置无序使它像液体,但排列是有序使它像晶体。

3.液晶的光学性质对外界条件的变化反应敏捷

液晶分子的排列是不稳定的,外界条件和微小变动都会引起液晶分子排列的变化,因而改变液晶的某些性质,例如温度、压力、摩擦、电磁作用、容器表面的差异等,都可以改变液晶的光学性质。

如计算器的显示屏,外加电压液晶由透明状态变为混浊状态。

五、气体

1.气体的状态参量

(1)温度:

温度在宏观上表示物体的冷热程度;在微观上是分子平均动能的标志。

热力学温度是国际单位制中的基本量之一,符号T,单位K(开尔文);摄氏温度是导出单位,符号t,单位℃(摄氏度)。

关系是t=T-T0,其中T0=273.15K

两种温度间的关系可以表示为:

T = t+273.15K和ΔT =Δt,要注意两种单位制下每一度的间隔是相同的。

0K是低温的极限,它表示所有分子都停止了热运动。

可以无限接近,但永远不能达到。

气体分子速率分布曲线:

图像表示:

拥有不同速率的气体分子在总分子数中所占的百分比。

图像下面积可表示为分子总数。

特点:

同一温度下,分子总呈“中间多两头少”的分布特点,即速率处中等的分子所占比例最大,速率特大特小的分子所占比例均比较小;温度越高,速率大的分子增多;曲线极大值处所对应的速率值向速率增大的方向移动,曲线将拉宽,高度降低,变得平坦。

(2)体积:

气体总是充满它所在的容器,所以气体的体积总是等于盛装气体的容器的容积。

(3)压强:

气体的压强是由于大量气体分子频繁碰撞器壁而产生的。

(4)气体压强的微观意义:

大量做无规则热运动的气体分子对器壁频繁、持续地碰撞产生了气体的压强。

单个分子碰撞器壁的冲力是短暂的,但是大量分子频繁地碰撞器壁,就对器壁产生持续、均匀的压力。

所以从分子动理论的观点来看,气体的压强就是大量气体分子作用在器壁单位面积上的平均作用力。

(5)决定气体压强大小的因素:

①微观因素:

气体压强由气体分子的密集程度和平均动能决定:

A.气体分子的密集程度(即单位体积内气体分子的数目)越大,在单位时间内,与单位面积器壁碰撞的分子数就越多;

B.气体的温度升高,气体分子的平均动能变大,每个气体分子与器壁的碰撞(可视为弹性碰撞)给器壁的冲力就大;从另一方面讲,气体分子的平均速率大,在单位时间里撞击器壁的次数就多,累计冲力就大。

②宏观因素:

气体的体积增大,分子的密集程度变小。

在此情况下,如温度不变,气体压强减小;如温度降低,气体压强进一步减小;如温度升高,则气体压强可能不变,可能变化,由气体的体积变化和温度变化两个因素哪一个起主导地位来定。

2.气体实验定律

3.对气体实验定律的微观解释

(1)玻意耳定律的微观解释

一定质量的理想气体,分子的总数是一定的,在温度保持不变时,分子的平均动能保持不变,气体的体积减小到原来的几分之一,气体的密集程度就增大到原来的几倍,因此压强就增大到原来的几倍,反之亦然,所以气体的压强与体积成反比。

(2)查理定律的微观解释

一定质量的理想气体,说明气体总分子数N不变;气体体积V不变,则单位体积内的分子数不变;当气体温度升高时,说明分子的平均动能增大,则单位时间内跟器壁单位面积上碰撞的分子数增多,且每次碰撞器壁产生的平均冲力增大,因此气体压强p将增大。

(3)盖·吕萨克定律的微观解释

一定质量的理想气体,当温度升高时,气体分子的平均动能增大;要保持压强不变,必须减小单位体积内的分子个数,即增大气体的体积。

六、热力学定律

1.热力学第零定律(热平衡定律):

如果两个系统分别与第三个系统达到热平衡,那么这两个系统彼此之间也必定处于热平衡。

(1)做功和热传递都能改变物体的内能。

也就是说,做功和热传递对改变物体的内能是等效的。

但从能量转化和守恒的观点看又是有区别的:

做功是其他能和内能之间的转化,功是内能转化的量度;而热传递是内能间的转移,热量是内能转移的量度。

(2)符号法则:

体积增大,气体对外做功,W为“一”;体积减小,外界对气体做功,W为“+”。

气体从外界吸热,Q为“+”;气体对外界放热,Q为“一”。

温度升高,内能增量DE是取“+”;温度降低,内能减少,DE取“一”。

(3)三种特殊情况:

l等温变化DE=0,即 W+Q=0

l绝热膨胀或压缩:

Q=0即W=DE

l等容变化:

W=0,Q=DE

(4)由图线讨论理想气体的功、热量和内能

3.热学第二定律

(1)第二类永动机不可能制成(满足能量守恒定律,但违反热力学第二定律)

实质:

涉及热现象(自然界中)的宏观过程都具有方向性,是不可逆的

(2)热传递方向表述(克劳修斯表述):

不可能使热量由低温物体传递到高温物体,而不引起其它变化。

(热传导有方向性)

(3)机械能与内能转化表述(开尔文表述):

不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化。

(机械能与内能转化具有方向性)。

4.热力学第三定律:

热力学零度不可达到。

5.熵增加原理:

在任何自然过程中,一个孤立系统的总熵是不会减少的。

——孤立系统熵增加过程是系统热力学概率增大的过程(即无序度增大的过程),是系统从非平衡态趋于平衡态的过程,是一个不可逆过程。

熵的增加表示宇宙物质的日益混乱和无序。

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 生物学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1