降落伞模型.docx

上传人:b****5 文档编号:11735269 上传时间:2023-03-31 格式:DOCX 页数:10 大小:38.48KB
下载 相关 举报
降落伞模型.docx_第1页
第1页 / 共10页
降落伞模型.docx_第2页
第2页 / 共10页
降落伞模型.docx_第3页
第3页 / 共10页
降落伞模型.docx_第4页
第4页 / 共10页
降落伞模型.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

降落伞模型.docx

《降落伞模型.docx》由会员分享,可在线阅读,更多相关《降落伞模型.docx(10页珍藏版)》请在冰豆网上搜索。

降落伞模型.docx

降落伞模型

降落伞模型

数学建模大赛

论文题目:

降落伞在下降过程中安全性问题

姓名1:

马颖涛学号20100006专业:

土木工程姓名2:

刘雷学号:

20100209专业:

土木工程姓名3:

崔磊学号:

20100241专业:

土木工程

2012年5月3日

一.摘要:

.......................................3二.问题的提出...................................4三(问题的分析..................................4四.建模过程.....................................5

1模型假设:

...............................5

2.定义符号说明:

............................5

3.模型建立.................................5

4模型求解:

................................8五.模型的评价与改进..............................9六.参考文献以及附录代码.........................10

1

摘要:

“降落伞在下降过程中的安全问题”数学模型是通过研究人体的重力、伞

的空气阻力(与受力面积成正比)、弹性绳的拉力之间的关系,建立人在竖直

方向上的运动模型,进而给出运动方程。

通过查阅资料我们可得一般人落地

2速度不得大于5m/s,空气阻力系数为2.9378,重力加速度9.8。

因此ms/

通过数据模拟拟合最终的外出最优值。

首先考虑最简单的情况,即不考虑绳

子的强度,忽略水平方向的风速影响,忽略绳子和伞衣的重量,把人和伞衣

看成整体,运用物理学中力与运动的关系和微分方程给出速度和下落时间的

微分关系,用matlab软件给出解析关系。

然后用该软件求出人体质量m和

伞衣面积的对应关系,并用表格表示。

使不同的人可以根据自己的体重选择

降落伞,也可以统计人的平均体重,确定降落伞的一般尺寸。

使人们根据自

己的体重可以选择适合自己的降落伞。

计算过程中,把伞衣视为半圆柱面,

32并且设定半圆柱面的长度和直径的关系。

伞衣面积。

但是,这种情Sd,,4

况只能粗略估计体重与伞衣面积的关系,实际中应考虑绳子的强度,即人和

伞衣的运动不同步。

由图4可知,十秒之后速度趋向恒定,加速度近似为零。

此时绳子拉力最大。

关键词:

安全问题运动方程拟合Matlab

2

一、问题的提出

在我们的生活环境中,任何事物都不可能一帆风顺的,尤其是在高空中,此时降落伞成了必不可少的救生设备。

降落伞的使用越来越广泛,大到战争中士兵的空降,小到救灾中物资的空投,降落伞都起到了非常重要的作用,降落伞设计制作的优劣对空降人员安全和物资完整变得尤为重要。

因此为避免这种现象,必须找出一个合理的方案,一般,通过改变降落伞的表面积增大与空气的接触面积、改变弹性绳与人之间的夹角来控制,使人下落时速度控制在一定的范围内,以便安全着陆。

二、问题的分析

由题意可知,目的就是为了建立一种模型,解决降落伞伞衣面积,伞衣的弯曲弧度,绳长和绳与伞的夹角,从而使降落伞的安全性达到标准的目的。

在我们所研究的问题中,首先建立人体竖直方向的运动模型,求解出降落伞在菜蔬一定的情况下额外呢的下落速度并且求出最优解。

图1图2图3

三、建模过程

1模型假设:

?

降落伞的各个组成部分都完好无损,没有任何质量问题

?

降落过程中,弹性绳的伸缩变量在弹性范围内

?

在绳与伞,人或者物资与背带系统等打结处不会松

?

忽略伞衣因空气阻力而产生的变形

?

降落伞与绳子质量忽略不计

?

空气阻力的阻力系数看做定值与其他因素无关

3

2定义符号说明

g——重力加速度

k——空气阻力系数

m——人体质量

s——伞衣的面积

a——下落某一时刻人的加速度

H——初始下落高度

——下落某一时刻人体速度v

L——每根弹性绳的长度

T——每根绳子拉力

D——每根绳子水平投影长度

3.模型的建立

为了方便对人进行受力分析,我们将人和降落伞看成一个整体,由图2可知整体只受到竖直向下的重力和竖直向上的空气阻力,题上给出空气阻力与伞衣面积成正比,而根据查阅资料我们可以得出空气阻力这样的关系式,因此根据牛顿第二定律得出:

fksv,

F=mg-f合

由运动学公式:

F=ma合

vt由速度与时间的一次积分建立方程(如下)

dv

a,

dt

mgfma,,

fksv,

0,v0

4

ks,tmgmgm,,,vte,,得出ksks

由位移H与时间t的二次积分建立方程

2dHmgksv,

,a2mdt

根据,,,,,,(见附录1)得出

kst22,mgmgtmgm(),,Ht=e2222ksksks

如果假设时间t为常量的话可以得出速度V质量m函数关系为

sk,tgmmgm,,,vme,,ksks

vs速度与伞衣面积的函数关系为

sk,tgmmgm,,,vse,,ksks

v,5因为在摘要中我们已经得知max

根据如下方程(运用MATLAB见附录2)得出一系列数据以

及S-M图表,取其中部分数据如下表:

5

sk,tgmmgm,,,vte,,

ksks

kst22,mgmgtmgmHt=()e,,2222

ksksks

Ht=600()

V,5max

32

,Sd

4

d=[1.5,1.7,„„6.3,6.5]

d(m)3.73.94.14.34.54.74.95.15.35.55.75.9232.235.839.643.547.752.056.561.366.271.276.582.0S()m

M(kg)48.353.759.465.371.578.084.891.999.2106.8114.1121.3

6

2S()m

m(kg)

图4

从表中我们可以粗略的得出落地速度在5m/s内,人的质量与伞衣面积成正比。

根据统计报告世界人均平均体重在75kg左右,所以我们可以将降落伞定做成伞

2衣面积52,最大承重为78kg。

m

显然此模型有不足之处,在降落伞下降过程中我们必须考虑弹性绳所受力必须在其弹性范围内考虑绳子需要的长度,因此接下来我们讨论这个问题(图3受力分析)

mg4Tcos=ma,,

D

sin=,

L

下落到一定高度a趋向于0(如图像所示)

7

v(m/s

t/s

图5

所以根据

D

4Tcosarcsin,mg

L

D

L,

mg

sinarccos()

4T

,,

22nsmsm(),

,c,

nmm,()

b,,,sbm

S=c*m+b由最小二乘法得出

c=0.66684

b=-0.0008

s=cm+b

132

sd,

4

8

13(),,cmb

l,

mg

23sinarccos,

4T

M(kg)40.8043.3045.8048.3053.7059.4065.3071.5078.0084.8091.9099.20106.80L(m)0.981.011.041.071.131.191.261.321.391.461.541.611.69

四、模型的评价与改进

模型评价:

模型最大的优点是模型设计简单,易于求解,在实际生活中的应用性还是比较大的。

但模型也有明显的不足,在实际中每名空降人员都是一个整体不能随意分割,此项应加入约束条件中。

有常识知,降落伞在下落时有一定的水平速度,下落方向与竖直方向有一定的夹角。

这一点在模型中忽略,模型没有考虑风的因素,因此只在无风的条件成立。

实际中,降落伞受到空气浮力的作用,由于所受浮力很小,所以模型中也将其忽略。

改进方向:

该模型假设的是人一下落,降落伞已经打开,而在实际情况下,我们都知道降落伞打开之前都有一段自由落体的运动,在进行深入考虑时应加入,一边模型具有普遍适用性。

参考资料

《数学建模》姜启源高等教育出版社2008

《数学建模原理与案例》冯杰等科学出版社

《高等数学》牟卫华等中国铁道出版社

《MATLAB教程》罗建军电子工业出版社

附录1

求解速度程序:

H=dsolve('D2H+ks/m*DH-g','H(0)=0','DH(0)=0','t')

9

UsingToolboxPatHCacHe.Type"Help

toolbox_patH_cacHe"formoreinfo.

Togetstarted,select"MATLABHelp"fromtHeHelpmenu.>>H=dsolve('D2H+ks/m*DH-g','H(0)=0','DH(0)=0','t')H=1/ks*g*m*t-g*m^2/ks^2+g*m^2/ks^2*exp(-ks/m*t)>>

附录2

求最大载重:

functionf=myfun(x)

d=1.5;

g=9.8;k=2.9378;

s=0.75*pi*d^2;

f=[x

(1)^2*g/(k^2*s^2)*exp(-k*s*x

(2)/x

(1))+x

(1)*g*x

(2)/(k*s)-x

(1)^2*g/(k^2*s^2)-600;g*x

(1)/(k*s)-g*x

(1)/k*s*exp(-k*s*x

(2)/x

(1))-5];

commandwindow窗口代码

x0=[1;1];

options=optimset('Display','iter');

x=fsolve(@myfun,x0,options)

附录3

速度与时间关系:

10

t=0:

0.5:

121;

m=71.5;s=47.6875;k=2.9378;g=9.8;

v=m*g/(k*s)*(1-exp(-1/m*k*s*t));

plot(t,v)

附录4

绘制S-M图形代码:

y1=[27.228.830.532.234.035.837.739.641.543.545.647.749.8

52.054.356.558.961.363.766.268.771.2];

x=[40.843.345.848.350.9953.756.559.462.365.368.471.574.7

78.081.484.788.391.895.599.2102.98106.8];c1=polyfit(x,y1,1)

tp1=40:

0.5:

110;

x1=polyval(c1,tp1)

plot(tp1,x1,x,y1,'.')

11

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1