Fluid Mechanics.docx

上传人:b****4 文档编号:11711261 上传时间:2023-03-30 格式:DOCX 页数:36 大小:173.94KB
下载 相关 举报
Fluid Mechanics.docx_第1页
第1页 / 共36页
Fluid Mechanics.docx_第2页
第2页 / 共36页
Fluid Mechanics.docx_第3页
第3页 / 共36页
Fluid Mechanics.docx_第4页
第4页 / 共36页
Fluid Mechanics.docx_第5页
第5页 / 共36页
点击查看更多>>
下载资源
资源描述

Fluid Mechanics.docx

《Fluid Mechanics.docx》由会员分享,可在线阅读,更多相关《Fluid Mechanics.docx(36页珍藏版)》请在冰豆网上搜索。

Fluid Mechanics.docx

FluidMechanics

FluidMechanics

TABLEOFCONTENTS

1OBJECTIVES1

BasicDefinitions1

Pressure1

Flow1

EnergyinaFlowingFluid1

OtherPhenomena2

TwoPhaseFlow2

FlowInducedVibration2

2BASICDEFINITIONS3

Introduction3

Pressure3

Density4

Viscosity4

3PRESSURE6

3.1PressureScales6

Example3.1:

6

Example3.2:

7

Example3.3:

7

3.2PressureDifferential7

Example3.4:

8

Example3.5:

8

3.3FactorsAffectingPressureofFluids9

4FLOW11

LaminarversusTurbulentFlow11

MassandVolumetricFlowRate12

TheContinuityPrinciple13

Example3.6:

14

Example3.7:

14

4.4EffectofPressureandTemperature15

5ENERGYINAFLOWINGFLUID16

Energy,PressureandHeadofFlowingFluid16

5.1.1Example5.1:

19

EnergyLossandHeadLoss19

ConservationofEnergyinFlowingLiquid20

PressureandVelocityChangesinaFluidSystem21

6OTHERPHENOMEMON26

Siphon26

LoopSeal27

Buoyancy28

7TWO-PHASEFLOW29

Cavitation30

WaterHammer31

SteamHammer33

MinimisingWaterorSteamHammer34

SolidOperation35

FLOW-INDUCEDVIBRATIONS37

SUMMARY38

ASSIGNMENTQUESTIONS39

1OBJECTIVES

BasicDefinitions

Definethefollowingtermsandstatetheirunitsofmeasurement:

pressure,density,andviscosity.

Pressure

Convertagivenvalueofpressureexpressedontheabsolute,gaugeorvacuumscaletotheappropriatevaluesoneitheroftheothertwoscales.

Givenapressuredifferentialactingonagivenarea,calculatetheforceproduced.

Statethefactorsaffectingpressureofliquidsandgases.

Flow

Describethedifferencebetweenlaminarflowandturbulentflowwithrespecttothevelocityprofileandpulsations.

Definemassandvolumetricflowrates.

Statetherelationshipsbetweenmassandvolumetricflow.

Statethecontinuityprincipleandapplyittodeterminethechangetoafluid'svelocity.

Explaintheeffectofpressureandtemperatureonvolumetricflowrateforliquidsandgases.

EnergyinaFlowingFluid

Definethefollowingtermsregardingasystemwithflowingliquid:

Elevationhead,pressureheadandvelocityhead,

Staticpressure,dynamicpressureandtotalpressure,and

Energylossandheadloss.

Statetheeffectoffluidviscosityandvelocityonaheadlossinturbulentflow.

Statetheeffectoftemperatureonviscosityofliquids.

Explaintherelationshipbetweenelevationhead,pressureheadandvelocityheadinafluidsystemwithenergylossesandadditions.

Givenasimplefluidsystemcomprisedofpipingwithconstantorvaryingelevationanddiameterandacombinationofelbows,orifices,venturis,valves,tanksandafluidmover(e.g.,pump),determinethedirectionofpressureandvelocitychangesalongthesystem,andexplainwhythesechangesoccur.

OtherPhenomena

Describethefollowingterms:

siphon,loopseal,andbuoyancy.

Explaintheadverseeffectsofgasorvapouraccumulationinasiphon.

TwoPhaseFlow

Definetwo-phaseflow.

Describethedifferentformsoftwophaseflow.

GiveexamplesofdifferentformsoftwophaseflowinaCANDUplant.

Definecavitation.

Explainhowcavitationcanoccurinafluidsystem.

Explainhoweachofthefollowingcanproducelargepressurespikesinafluidsystem:

waterhammer,steamhammer,andsolidoperation.

Explainhowthefollowingoperatingpracticesminimisetheriskofwaterorsteamhammer:

Drainingofasteamorgassystem,

Ventingandslowprimingofaliquidsystem,

Slowoperationofvalves,

Startinguporshuttingdownacentrifugalpumpwithits

dischargevalveclosedorcrackopened,

Delaybetweenpumpstart-upsandshutdowns,and

Applyingcoolingwatertoheatexchangersfirst.

FlowInducedVibration

Explainhowaflowingfluidcancauseequipmentvibration.

2BASICDEFINITIONS

Introduction

FluidsystemsarethebackboneofnuclearpowerplantsandtheCANDUstationsarenoexception.Wewillusethetermfluidasagenerictermforbothliquidsandgases.

Thefluidsystemsareusedprimarilyasheattransportvehicles.Anexamplewouldbethegeneratorstatorcoolingsystem.Heatgeneratedinthestatorwindingsistransferredtotheclosed-loopstatorcoolingsystemandthentothelow-pressureservicewater.

Thismoduleisdesignedtohelpyouunderstandprocessesthatoccurinindividualfluidhandlingpartsanddevicesaswellasentiresystems.

Inthismodule,wewillreviewbasicterms,conceptsandlawsoffluidmechanicsandapplythemtoassortedfluid-relatedprocessesinnuclearpowerplants.

Pressure

Pressureisoneofthebasicpropertiesofallfluids.Pressure(p)istheforce(F)exertedonorbythefluidonaunitofsurfacearea(A).

Mathematicallyexpressed:

F

p=A

ThebasicunitofpressureisPascal(Pa).Whenafluidexertsaforceof1Noveranareaof1m2,thepressureequalsonePascal,i.e.,1Pa=1N/m2.

Pascalisaverysmallunit,sothatfortypicalpowerplantapplication,weuselargerunits:

1kilopascal(kPa)=103Pa,and

1megapascal(MPa)=106Pa=103kPa.

Density

Densityisanotherbasicfluidproperty.Density(p-Greekro)isdefinedasmass(m)ofaunitofvolume(V).Itsbasicunitiskg/m3.

Mathematicallyexpressed:

m

p=V

Forallpracticalpurposes,liquidsareconsideredtobeincompressible,i.e.,theirvolumeanddensityarenotaffectedbypressure.Althoughitisnotabsolutelytrue,thechangesarenegligible.Theeffectoftemperatureondensityofliquids,however,cannotbeignoredbecauseliquidsexpandandcontractwhentemperaturechanges.

Bothpressureandtemperatureaffectdensityofgases.Whentemperatureiskeptconstant,anincreaseinpressurewillincreasedensity.Whenpressureiskeptconstant,anincreaseintemperaturewilldecreasedensity.

Viscosity

Viscosityisanotherfluidpropertyweneedtounderstandbeforediscussingsomeotheraspectsofmechanicalequipment,suchaspressurelossesinpipingduetofrictionorbearinglubrication.

Viscosityisameasureofthefluid'sresistancetoflowduetoitsinternalfriction.

Viscosityismeasuredintwoways:

dynamic(absolute)andkinematic.Thesetwoparametersarerelatedsincethekinematicviscositymaybeobtainedbydividingthedynamicviscositybydensity.

Inthismodule,forsimplicity,wewillonlyusetheabsoluteviscositywhenexplainingfluidfrictioninpipingsystems.When,inthefollowingtextwementionviscosity,itisthedynamicviscosity.

Dynamic(absolute)viscosity(n-Greekmu)isthemeasureofthetangentialforceneededtoshearoneparallelplaneoffluidoveranotherparallelplaneoffluid.Thethicker/moreviscousthefluid,thelargertheareaofcontact,andthelargerthevelocitychangebetweenthelayersofthefluid,thelargerthetangentialforce.

Thebasicunitisthepascal-second(Pa-s).Theviscosityofafluidequals1Pa-sifaforceof1Nisneededtosheara1m2planeofthisfluidwhenthevelocitychangebetweenthelayersofthefluidis1m/sper1m.Athousandtime'ssmallerunitiscalledcentipoise(cP).Togiveyousomefeelforthisunit,theviscosityofwaterat20?

Cisabout1cP.

Viscosityofliquidsismuchlargerthanviscosityofgasesorsteam.Forallfluids,viscosityincreaseswithrisingpressure.Theeffectoftemperatureismuchbigger,though,anditdependsonthetypeoffluid:

risingtemperaturelowerstheviscosityofaliquid,andincreasestheviscosityofagas.Thisdifferenceisexplainedbelow.

Theresistanceoffluidtoshear(i.e.,viscosity)dependsuponitscohesionanditsrateoftransferofmolecularmomentum.Cohesionreferstotheattractiveforcesbetweenneighbouringmolecules.Whenthefluidexpandsduetoincreasedtemperature,themoleculesgetfurtherapart,andcohesiongetsweaker.Transferofmolecularmomentumiscausedbyrandommovementsoffluidmoleculesbackandforthbetweendifferentlayers.Thistransfertendstoequalizethevelocitiesofadjacentlayers,andthus,itresiststheirrelativemotion.Inliquids,moleculesaremuchmorecloselyspacedthaningases.Therefore,cohesionisthedominantcauseofviscosity,andsincecohesiondecreaseswithtemperature,viscositydoeslikewise.Agas,ontheotherhand,hasverysmallcohesiveforces.Mostofitsresistancetoshearistheresultofthetransferofmolecularmomentum.Thehigherthetemperature,thelargerthistransfersbecausemoleculesmovefaster.Therefore,theviscosityofagasincreaseswithrisingtemperature.

3PRESSURE3.1PressureScales

Sinceweliveinanatmosphereofpressurisedair,wehavetodecideonthedatum,wherethepressurewouldbezero.

Onecommonlyusedscaleistheabsolutescale.Itstartsatthepointofnopressureatall,i.e.,theabsolutezeropressure.Readingstakenonthisscalearecalledabsolutepressureandhavesuffix(a)added,e.g.,4MPa(a).

Ascalewithzeroatatmosphericpressureisknownasthegaugescale.Readingsmadeonthisscalearecalledgaugepressure.Thenamereflectsthefactthatmostgaugesreadzeroattheatmosphericpressure.Todistinguishreadingsonthisscale,weusesuffix(g).Thegaugescaleisthemostcommonscaleusedinourplants.

Sinceatmosphericpressurechangesconstantly,itmaybedifficulttopinpointthegaugepressurezeropoint.Therefore,weusestandardatmosphericpressuresetat101.3kPa(a).Withatmosphericpressurechangesbeingrelativelysmallcomparedwithpressuresusedintheindustry,smallvariationsareignored.

Wenowcancorrelatethetwodiscussedscales:

p(a)=p(g)+atmosphericpressure

3.1.1Example3.1:

Ifinstrumentairgaugepressureis580-kPa(g),whatisitsabsolutevalue?

p(a)=580kPa(g)+101.3kPa=681.3kPa(a)

Thethirdscale,sometimesusedinourplantsforsystemsatlowerthanatmosphericpressure,isthevacuumscale.Vacuumisthedifferencebetweentheatmosphericpressure

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 起诉状

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1