统计学外文翻译.docx

上传人:b****4 文档编号:11701590 上传时间:2023-03-30 格式:DOCX 页数:17 大小:84.06KB
下载 相关 举报
统计学外文翻译.docx_第1页
第1页 / 共17页
统计学外文翻译.docx_第2页
第2页 / 共17页
统计学外文翻译.docx_第3页
第3页 / 共17页
统计学外文翻译.docx_第4页
第4页 / 共17页
统计学外文翻译.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

统计学外文翻译.docx

《统计学外文翻译.docx》由会员分享,可在线阅读,更多相关《统计学外文翻译.docx(17页珍藏版)》请在冰豆网上搜索。

统计学外文翻译.docx

统计学外文翻译

统计学外文翻译

外文翻译原文

 

名称:

Fundamentals_of_Statistics

 

MeasuresofCentralTendencyandLocation:

mean,median,mode,percentiles,quartilesanddeciles.

xsortedx

5353

5553

7053

5855

6457

5757

5358

6964

5768

6869

5370

TheMeasuresofCentralTendencyareMean,MedianandMode

Mean→x-baror

→foragivenvariable,itisthesumofthevaluesdividedbythenumberofvalues(∑xi/n).Inthiscase,wehaven=11.Soweneedtoaddallofthevaluestogetheranddivideby11.∑=657,

=59.73

Median→thenumberinadistributionofavariable’sresponsewhereonehalfofthevaluesareaboveandonehalfofthevaluesarebelow.Tofindthemedian,wefirstneedtoputourdatainascendingorder(smallesttolargest).Thenwecandeterminethemedian…ifthevalueofnisodd,itissimplythemiddleobservation,butifthevalueofniseven,itistheaverageofthetwomiddleobservations.

Inthiscase,nisodd,sothemedianwillbethemiddleobservationofoursortedvalues(the6thvalue)...57

Mode→thevaluethatoccursmostfrequently.Iftherearetwodifferentvaluesmostfrequentlyoccurring,thedataaresaidtobebi-modal.Iftherearemorethantwomodes,andthedistributionissaidtobemulti-modal.Inthiscase,thevaluethatoccursmostoftenis53.So,themodeis53.

ThemeasuresoflocationarePercentile,QuartileandDecile

Percentile→thepthpercentileisavaluesuchthatatleastppercentoftheobservationsarelessthanorequaltothisvalueandatleast(100–p)percentoftheobservationsaregreaterthanorequaltothisvalue.Tocalculatepercentiles,weuseindices(i).

i=(p/100)nforp1,p2,p3,…p99

Iftheanswerisawholenumber(aninteger),theniistheaverageof(P/100)nand1+(P/100)n.

Iftheindexnumberisnotawholenumber,weALWAYSroundup.Thepositionoftheindexisthenextwholenumber(integer)greaterthanthecomputedindex.

Forexample:

i(p50)=(50/100)11=5.5...thisroundsupto6

So,wewouldcountfromthelowestvalueofthesorteddatatotheindexnumber(6).Sincethecalculatediwasnotawholenumberwehadtorounduptofindthevaluewhereatleast50%ofthevaluesareequaltoorlowerthanthisvalueandatleast50%areequaltoorhigherthanthisvalue.Inthiscase,thevalueofthe50thpercentileisthe6thvalue...57…Doesthislookfamiliar?

→The50thpercentileisthesamethingasthemedian.

Whatdoesittellus?

Inthisdistribution,ATLEAST50%oftheobservationsareLESSTHANOREQUALTO57ANDATLEAST50%oftheobservationsareGREATERTHANOREQUALTO57.

i(p80)=(80/100)11=8.8...thisroundupto9.The9thvalueis68.

Again,sincetheindexnumberisnotawholenumber,weroundup.So,wewouldcountfromthelowestvalueofthesorteddatatotheindexnumber(9).Inthiscase,thevalueofthe80thpercentileis68.

Sincethisdatasethas11observations,wewon’thaveanyinstanceswhereourcalculatedindexnumberisawholenumber.However,ifwejustremoveourvalueof70andcreateanewdistribution,wewillbeabletoseeanexample...

53535355575758646869

i(p30)=(30/100)10=3...thisisawholenumber,sowemusttakethe3rdand4thvaluesandaveragethemtofindthe30thpercentile.(53+55)/2=54

So,thevalueofthe30thpercentileis54.

Returntoouroriginaldatadistribution...

Quartiles–arespecialcasesofpercentiles…Q1=P25,Q2=P50,Q3=P75,

Thesethreevaluesdividethedistributioninto4equalquarters

i(Q1)=(25/100)11=2.75...thisroundsto3,soQ1isthe3rdvalue...53

i(Q2)=(50/100)11=5.5...thisroundto6,soQ2isthe6thvalue...57

i(Q3)=(75/100)11=8.25...thisroundsto9,soQ3isthe9thvalue...64

MeasuresofDispersionorVariability:

Range,interquartilerange(IQR),variance,standarddeviationandcoefficientofvariation.

Range=Thistellsushowwidethespanisfromthemaximumvaluetotheminimumvalue.(Max–Min)=Range.Inthisinstance,therangeis69-53=16.

InterquartileRange(IQR)=Thistellsushowwidethespanisinthemiddle50%ofthedata.(Q3–Q1)=IQR.Inthiscase...64–53=11

WewilluseIQRinlaterprocesses,sowewillwanttokeepthis

x

(x-xbar)

(x-xbar)2

5353

-6.73-6.73

45.2945.29

5353

-6.73-6.73

45.2945.29

5353

-6.73-6.73

45.2945.29

5555

-4.73-4.73

22.3722.37

5757

-2.73-2.73

7.457.45

5757

-2.73-2.73

7.457.45

5858

-1.73-1.73

2.992.99

6464

4.274.27

18.2318.23

6868

8.278.27

68.3968.39

6969

9.279.27

85.9385.93

7070

10.2710.27

105.47105.47

657657

-0.03-0.03

454.18454.18

657/11=59.73

454.18/10≈45.2

Weusetheformula:

=s2

Thevarianceforthesedatais454.18.Forourpurposeshere,thecomputationofvarianceisjustasteptowardsthecomputationofthestandarddeviation.

Samplestandarddeviation(s)isthepositivesquarerootofthevariance.

=s

Sotheformulaforsamplestandarddeviationis…

PopulationVariance(σ2)→usesthesameformulainthenumerator,butNinsteadofn-1inthedenominator.Sincewerarelyhaveinformationabouttheentirepopulation,wealmostalwaysusetheformulaforsamplevariance,s2.

PopulationStandardDeviation:

σ=

…sincewerarelyhaveinformationfromtheentirepopulation,weusetheformulaforsamplestandarddeviation,s.

CoefficientofVariation:

tellsuswhatpercentthesamplestandarddeviationisofthesamplemean

Thisnumberis“relative”andisonlyofuseincomparingthedistributionoftwoormorevariables.

SupposeIhavetwosamples,andIwanttoknowwhichsamplehasmorevariability…

Ifbothsampleshavethesamemean,theonewiththehigherstandarddeviationwillhavethegreatervariability.However,iftheyhavedifferentmeans,Ineedtocalculatethecoefficientofvariationtodeterminewhichonehasthemostvariability.xbar=458,s=112versusxbar=687,s=192

StandardizedDataandDetectingOutliers

Z-score:

z=

Thez-scoretellsushowmanystandarddeviationsavalueisfromthemean.Wecanlookatapictureofwhataz-scoretellsus.IntheNormalCurve…themeanisatthehighestpointandthecurvetailsoffsymmetricallyinbothdirections.

Thesignofthez-scoretellsuswhichdirectionthevalueisfromthemeanontheNormalCurve.Negativevalueswillbetotheleft,andpositivevalueswillbetotheright.

StandardizingScores:

StandardNormalCurve…themeaniszero,andthestandarddeviationis1.Thedistributionisbell-shapedandsymmetrical.Theareaunderthecurveis1,andthetailsofthecurveextendoutinfinitely.Theyneveractuallytouchthehorizontalaxis.Thehighestpointonthecurveisatthemean

Returntoourdata…let’scalculatethez-scoresforeachofthevalues…

EmpiricalRule→usedwhenthedistributionisassumedtoknowntobeapproximatelynormal.

→Approximately68%ofthevalueswillfallwithin1sdofthemean

→Approximately95%ofthevalueswillfallwithin2sdofthemean

→Approximately99.9%ofthevalueswillfallwithin3sdofthemean

Chebyshev’sTheorem→doesn’trequirethatthedatahaveanormaldistribution

Saysthatatleast(1–1/z2)valueswillfallwithinzstandarddeviationsofthemean.

1-1/12=0,1-1/22=.75,1-1/32=.88889,1-1/42=.9375,1-1/52=.96

→Wecan’tmakeanyassumptionsaboutthepercentofvaluesthatarewithin1sdofthemean

But…

→Atleast75%ofthevalueswillfallwithin2sdofthemean

→Atleast88.9%ofthevalueswillfallwithin3sdofthemean

WeuseChebyshev’sTheoremtoestimatethevariationinadistributionwhen

→n<30,or

→theshapeofthedistributionisunknown,or

→thedistributionisassumedtobenon-normal.

Outliers:

suspectorextremevaluesofdatathatmustbeidentifiedandscrutinized.Iftheyareinstancesofincorrectlyentereddata,theyshouldbecorrected.Ifthevaluewasenteredcorrectlyanditisavalidnumber,itshouldremaininthedatasetaspartoftheinitialanalysis.

Whenweusethez-scoremethodforidentifyingoutliers,weassumethatanyvaluethathasaz-scorewithanabsolutevaluegreaterthan3.0(thatislessthan-3.0orgreaterthan+3.0)isanoutlier.Beforeweproceedwithdataanalysis,weneedtoexaminealloutliersforaccuracy.Ifwedeterminethatthevalueisvalid,weoftenruntwosetsofanalysis.Onewiththeoutlier,andonewithout.

Anotherwaytoidentifyoutliers…

RelatedtoIQRistheFivenumbersummary…minimum,Q1,Q2,Q3,&maximum.Thesevaluesfeedintoupperandlowerlimits,andwegraphtheminaboxplot.

FiveNumberSummary

Minimum

53

Q1

53

Q2

57

Q3

64

Maximum

70

 

→Usetheboxplot…TheadvantageoftheboxplotisthatitisnotinfluencedbyoutliersorextremevaluesasareZ-scores.

BoxPlots–Whiskersshowtherangeofdatawithintheinnerfences

 

3(IQR)1.5(IQR)Q1MedianQ31.5(IQR)3(IQR)

belowQ1belowQ1(IQR)aboveQ3aboveQ3

(LowerOuter&InnerFences)(UpperInner&OuterFences)Anyvaluesbetweentheinnerandouterfencesare“unusual,”andanyvaluesoutbeyondtheouterfencesare“outliers.”

Advantageofusingtheboxplotmethodaswellasthez-scoremethod...theboxplotmethodisnotinfluencedbyextremevaluesinthesamewaythatthemeanandthestandarddeviationare....itissaidtobeamoreconservativemethodofevaluatingoutliers.

外文翻译原文

 

课题名称:

统计基础

 

MeasuresofCentralTendencyandLocation:

趋势和位置的划分:

mean,median,mode,percentiles,quartilesanddeciles.意思是说,中位数,众数,百分位数,四分位数和十分位数。

 

xx                sortedx排序x

5353                          5353

5555                          5353

7070                          53

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 中医中药

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1