MPhil Report Draft Abstract Background Contact Angle.docx

上传人:b****4 文档编号:11697240 上传时间:2023-03-30 格式:DOCX 页数:34 大小:1.16MB
下载 相关 举报
MPhil Report Draft Abstract Background Contact Angle.docx_第1页
第1页 / 共34页
MPhil Report Draft Abstract Background Contact Angle.docx_第2页
第2页 / 共34页
MPhil Report Draft Abstract Background Contact Angle.docx_第3页
第3页 / 共34页
MPhil Report Draft Abstract Background Contact Angle.docx_第4页
第4页 / 共34页
MPhil Report Draft Abstract Background Contact Angle.docx_第5页
第5页 / 共34页
点击查看更多>>
下载资源
资源描述

MPhil Report Draft Abstract Background Contact Angle.docx

《MPhil Report Draft Abstract Background Contact Angle.docx》由会员分享,可在线阅读,更多相关《MPhil Report Draft Abstract Background Contact Angle.docx(34页珍藏版)》请在冰豆网上搜索。

MPhil Report Draft Abstract Background Contact Angle.docx

MPhilReportDraftAbstractBackgroundContactAngle

CambridgeUniversity

M.Phil.–Micro-andNanoTechnologyEnterprise

DepartmentofMaterialsScience&Metallurgy

 

SurfaceAcousticWave(SAW)andElectrostaticNanopumps

 

Submittedby:

MichaelSwanwick

DateSubmitted:

26thJuly2007

CourseAdvisor:

Dr.A.Flewitt

Acknowledgements

IwouldfirstliketothankmyresearchadvisorDr.AndrewFlewittforhishelpandguidanceonmyMPhilprojectandalso,Dr.YongQuinFuforhishands-onhelpwitheverythingfromfabricationtoexperimentalset-up.Myprojectwouldnothavebeensuccessfulwithouthishelp.Lastly,IwouldthanktheotherPhDstudentsinDr.Flewitt’sETRIgroupincludingNoraStaack,XiaoyeDu,andSwee-ChingTan.

TableofContents

ListofFiguresiii

ListofChartsiii

ListofEquationsiv

Abstract5

1.Introduction6

2.Background7

2.1ContinuousFlowMicropumps7

2.1.1Electrohydrodynamic(EHD)Micropumps7

2.1.2Electro-osmotic(EO)Micropumps8

2.1.3MagnetohydrodynamicMicropumps8

2.2Droplet/DigitalMicropumps8

2.2.1Surfaceacousticwaves(SAW)Micropumps9

2.2.2Dielectrophoretic(DEP)LiquidActuation14

2.2.3Electrowetting-basedActuation16

2.2.4ElectrostaticMicropump21

2.3DigitalMicromixing25

2.4MaterialSelection26

2.5BackgroundConclusion27

3.DropletContactAngleandSlidingForcexx

3.1ContactAngleIntroductionxx

3.2ContactAngleBackgroundxx

3.3ContactAngleExperimentalSet-upxx

3.4HydrophobicCoatingResultsxx

3.5ContactAngleandSlideForceDiscussionxx

3.6ContactAngleConclusionxx

4.SurfaceAcousticWave(SAW)BasedMicro-pumpxx

4.1SAWIntroductionxx

4.2SAWBackgroundxx

4.3SAWExperimentalSet-upandDeviceFabricationxx

4.4SAWDropletMixingResultsxx

4.5SAWDropletMovementResultsxx

4.6SAWTemperatureEffectsResultsxx

4.7SAWConclusionxx

5.ElectrostaticBasedMicropumpxx

5.1ElectrostaticMicropumpIntroductionxx

5.2ElectrostaticFabricationProcessFlowandMaskDesignxx

5.3ElectrostaticMicropumpSet-upxx

5.4ElectrostaticMicropumpResultsandDiscussionxx

5.5ElectrostaticMicropumpConclusionxx

6.Conclusionxx

Sourcesxx

ListofFigures

Figure1–MetalFingeronITDSurfaceofSAWMicropump9

Figure2–IndependentDropletMovementandDropletMixing11

Figure3–ComparisonofFlowVelocityvs.RF-Power12

Figure4–MixingEfficiencyandTemperaturevs.AppliedVoltageforSAWMixer13

Figure5–FresnelAnnularRingAcousticWaveMicropump14

Figure6–DielectrophoreticLiquidActuation15

Figure7–AsymmetricActuationofDropletbyElectricField16

Figure8–InterfacialEnergiesofDroplet17

Figure9–Electrowetting(EWOD)DropletActuator18

Figure10–DesignOptionsforElectrowettingDropletActuator19

Figure11–AsymmetricDropletMovingbyEWODMicropump19

Figure12–CartoonofEWODMicropump20

Figure13–Box-in-boxElectrodes21

Figure14–DesignStudyforCompleteEWODDevice21

Figure15–PrincipleofElectrostaticDigitalActuation22

Figure16–ElectrostaticActuationMethod23

Figure17–DaughterDropletFormationbyElectrostatics24

Figure18–NovelElectrostaticDropletActuationTechnique24

Figure19–TimeofMixingvs.SpeedofDroplet26

Figure20–MicrocontactPrintingforEWODDevices27

Figure21–Contactmechanicsfora)Young’sMode,b)Wenzel’sMode,c)Cassie’sMode,d)MixofWenzel’sandCassie’sMode33

Figure22–SuperhydrophobicCross-grownCNTs162°ContactAngle34

Figure23–CartoonofWaterDropletonSlope35

Figure24–ExampleofPTFEonZnOwith60μlDropletatSlidingAngle37

Figure25–60μlDropletonUntreatedLiNbO3a)Flat(left)andb)SlidingSlope(right)37

Figure26–60μlDropletonPTFETreatedLiNbO3a)Flat(left)andb)SlidingSlope(right)37

Figure27–ContactAngleonFlatSurfacefor60μlDroplet38

Figure28–SlidingSlopefor60μlDroplet39

Figure29–HysteresisattheSlidingAnglefor60μlDroplet39

Figure30–SlidingForce,Fs,fora60μlDIWaterDroplet40

Figure31–ContactAngleof10μlDropletandPTFEHardBakedat300°Cfor25min41

Figure32–ContactAngleof10μlDropletonPTFEa)Flat(left)b)SlidingSlope(right)41

Figure33–MassloadingbetweenIDTsforBiosensorApplication47

Figure34–SAWdevicesample(left)andexperimentalsetup(right)49

Figure35–ReflectionandTransmissionofLiNbO3SamplewithandwithoutPTFE49

Figure36–CartoonofSAWLeakywaveandRayleighAngle50

Figure37–DropletStreamingVorticesfromSAWdevicea)TopViewb)SideView51

Figure38–ExampleofDropletStreamingatapproximately5VonUntreatedLiNbO351

Figure39–DropletStreamingVelocityvs.VoltageforUntreated&ParaffinTreatedSample52

Figure40–DropletVelocityonPTFEandDowCorning704oiltreatedLiNbO353

Figure41–SurfaceTemperatureEffectsforλ=32μmSAWdevice54

Figure42–SurfaceTemperatureEffectsforλ=64μmSAWdevice55

Figure43–ChevronDesignofElectrodes56

Figure44–DropletMovementbyElectrostaticActuation57

Figure45–AutoCADDrawingsofElectrostaticMicropumpMaskDesign57

Figure46–ContactAngleandSlidingSlopewithSU-8andPTFE200°CHard-bake61

Figure47–ContactAngleandSlidingSlopewithSU-8andPTFE250°CHard-bake61

Figure48–ComparisonofSlidingForcefor60μlDropletwithDifferentSurfaceTreatments62

Figure49–ProfilesofPTFEonSU-8surface250°C(left)and200°C(right)63

ListofTables

Table1–PTFEThickness36

Table2–Datafrom60μlDIWaterDropletonDifferentSurfacesandAngles37

Table3–ContactandSlidingAngleforVaryingSizeDIWaterDroplets41

Table4–Xxx

ListofEquations

Equation1–Stuetzer’sformula7

Equation2–VelocityEquationforElectro-osmoticFlow8

Equation3–LorentzForceEquation8

Equation4–SAWDrivingFrequency10

Equation5–RayleighDeflectionAngle10

Equation6–PressurefromAcousticRadiation10

Equation7–PecletNumber12

Equation8–DEPDrivingForce14

Equation9–VoltageforDEPActuation14

Equation10–Lippman’sEquation17

Equation11–Young’sEquation17,32

Equation12–Wenzel’sEquation32

Equation13–Cassie’sEquation33

Equation14–EquationforSphericalDropletVolumewithContactPatch17

Equation15–SlidingForce17

Equation16–ForcefromGravity17

Equation17–Xxx

SurfaceAcousticWave(SAW)andElectrostaticNanopump

Abstract

Thefieldofmicrofluidicisdevelopingrapidlywithemergingproductssuchasmicrototalanalysissystem(μTAS)andmicro-coolingdevicesthatrelyonmicropumpsasthecoreoftheirfunction.Micropumpshaveevolvedfromsimplysmallerversionsofmacro-pumpsandnowtakeadvantageofuniquepropertiesthataredominantonthemicronandnanometrescale.Micropumpsaredividedintomechanicalandnon-mechanicaldesignswithnon-mechanicalpumpsbeingfurthersubdividedintocontinuousflowanddropletbaseddevices.Theprojectfocusesthreekeyareastwochannel-lessnon-mechanicaldigitalordropletbasedmicropumps:

surfaceacousticwave(SAW)andelectrostatic,andthehydrophobiccoatingneededdropletmovement.

TheSAWdeviceshaveanaluminiumInterDigitalTransducers(IDTs)ontheLithiumNiobate(LiNbO3)piezoelectricmaterialthatactsastheexcitationagent.WhenthesignalthroughtheIDTmatchesthecorrectfrequency,amechanicalwavepropagatesawayfromtheIDTonthesubstratesurface.TheRayleighwavescauseanacousticradiationpressurefromtheretrogradeellipticmotion.TheprojectfocusesonthesurfacetreatmentandhydrophobicityofthesurfaceusingPolytetrafluoroethylene(PTFE)andtheeffectonsurfaceenergyandforceneedtomoveadroplet.TheresultsshowdropletmixingandmovementasafunctionofsurfacetreatmentandappliedvoltageandsurfacetemperatureeffectsfromtheSAWdevice.

Theelectrostaticpumpisbasedontheconceptofelectro-wetting.Adiscreetdropletismovedbydeformingtheliquidasymmetrically.Thisformsapressuregradientinthedropletwhichcausesmovement.Thedeformationiscausedbyactivatinganelectrodeslightlytoonesideofthedroplet.Ifthecapillaryforcesthatkeepitinplaceareovercome,thedropletmovestowardtheelectrode.Anotherwaytodescribethemotionisthattheelectrodewetsthesurfaceaboveit.Thiscreatesahydrophilicgradientwhichthedropletmovesalong.Fortheproject,fivedeviceshavebeendesignedincludingastraightlinemotion,oval‘racetrack’,dropletmixer,dropletdirection,anddropletsplitterwithtwodifferentelectrodepitches.Theresultswillshowhowfrequencyandvoltageaffectdropletmovementalongwithsurfacetreatment.

 

1.Introduction

Needstobewritten.

2.BackgroundofMicro-pumps

Nano/micropumpshavedevelopedoverthelast30yearsinparallelwiththeadvancementofmicroelectromechanicalsystems(MEMS)technology.Micropumpsareutilizedinmanyapplicationsincludingbiological,chemical,andsensorsystems.Byreducingtheliquidvolume,experimentsreducewaste,providefasterreactions,quickenmixingtimeandpotentiallyprovideasaferworkenvironment.Anearlyapplicationofthemicropumpwasaninsulindeliverysystemwherepreciseflowratecontrolisimportant[1].OtherexamplesincludinguseinbioassaysforDNAdetectionandmicro-coolinghotspotsonmicroprocessorchips[2].In2002,themicrofluidicsmarketwasestimatedat$3-4.5billionandisincreasing25-35%annually[3].Anewfieldofresearchandproductscalledmicrototalanalysissystem(μTAS)isemergingthatreliesonmicropumpsforlab-on-chipdevices[4].Currently,thissystemandothermicrofluidicapplicationsareinlimiteduseduetothehighcostofproductionandlac

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1