555时基集成电路原理及应用.docx
《555时基集成电路原理及应用.docx》由会员分享,可在线阅读,更多相关《555时基集成电路原理及应用.docx(15页珍藏版)》请在冰豆网上搜索。
555时基集成电路原理及应用
555时基集成电路原理及应用
1555时基电路的特点
555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。
但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。
此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。
由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体,如图1所示。
图1555集成电路内部结构图
555集成电路是8脚封装,双列直插型,如图2(A)所示,按输入输出的排列可看成如图2(B)所示。
其中6脚称阈值端(TH),是上比较器的输入;2脚称触发端(TR),是下比较器的输入;3脚是输出端(Vo),它有O和1两种状态,由输入端所加的电平决定;7脚是放电端(DIS),它是内部放电管的输出,有悬空和接地两种状态,也是由输入端的状态决定;4脚是复位端(MR),加上低电平时可使输出为低电平;5脚是控制电压端(Vc),可用它改变上下触发电平值;8脚是电源端,1脚是地端。
图2555集成电路封装图
我们也可以把555电路等效成一个带放电开关的R-S触发器,如图3(A)所示,这个特殊的触发器有两个输入端:
阈值端(TH)可看成是置零端R,要求高电平,触发端(TR)可看成是置位端S,要求低电平,有一个输出端Vo,Vo可等效成触发器的Q端,放电端(DIS)可看成是由内部放电开关控制的一个接点,由触发器的Q端控制:
Q=1时DIS端接地,Q=0时DIS端悬空。
另外还有复位端MR,控制电压端Vc,电源端VDD和
地端GND。
这个特殊的触发器有两个特点:
(1)两个输入端的触发电平要求一高一低,置零端R即阈值端(TH)要求高电平,而置位端s即触发端(TR)则要求低电乎;
(2)两个输入端的触发电平使输出发生翻转的阈值电压值也不同,当Vc端不接控制电压时,对TH(R)端来讲,>2/3VDD是高电平1,<2/3VDD是低电平0:
而对TR(S)端来讲,>1/3VDD是高电平1,<1/3VDD是低电平0。
如果在控制端(Vc)上控制电压Vc时,这时上触发电平就变成Vc值,下触发电平就变成1/2Vc值,可见改变控制端的控制电压值就可以改变上下触发电平值。
它的功能表见图3(B)所示。
图3555电路等效R—S触发器
555集成电路有双极型和CMOS型两种。
CMOS型的优点是功耗低、电源电压低、输入阻抗高,但输出功率较小,输出驱动电流只有几毫安。
双极型的优点是输出功率大,驱动电流达200毫安,其他指标则不如CMOS型的。
555的应用电路很多,只要改变555集成电路的外部附加电路,就可以构成几百种应用电路,大体上可分为555单稳、555双稳及555无稳(即振荡器)三类。
2555单稳电路
单稳电路有一个稳态和一个暂稳态,是利用电容的充放电形成暂稳态的,因此它的输入端都带有定时电阻和定时电容,常见的555单稳电路有两种:
1)人工启动型
将555电路的6、2脚并接起来接在RC定时电路上,在定时电容CT,两端接按钮开关SB,就成为人工启动型555单稳电路,如图4(a)所示,用等效触发器替代555,并略去与单稳工作无关的部分后见图4(b)所示,下面分析它的工作原理:
稳态:
接上电源后,电容CT很快充电到VDD,从图4(b)看到,触发器输入R=1,S=1,从功能表看到输出Vo=0,这是它的稳态。
暂稳态:
按下开关SB,CT上电荷很快放到零,相当于触发器输入R=0,S=0,输出立即翻转成Vo=l,暂稳态开始。
开关放开后,电源又向CT充电,经过时间TD后,CT上电压上升到>2/3VDD时,输出又翻转成Vo=O,暂稳态结束。
TD就是单稳电路的定时时间或延时时间,它和定时电阻RT和定时电容CT的值有关:
TD=1.1RTCT。
图4人工启动型555单稳电路
2)脉冲启动型
将555电路的6、7脚并接起来接在定时电容CT上,用2脚作输入就成为脉冲启动型单稳电路,如图5(a)所示,电路的2脚平时接高电平,当输入接低电平或输入负脉冲时才启动电路,用等效触发器替代555后见图56)所示,下面分析它的工作原理:
稳态:
接上电源后,R=1,S=1,输出Vo=0,DIS端接地,CT上的电压为0即R=0,输出仍保持Vo=0,这是它的稳态。
暂稳态:
输入负脉冲后,输入S=0,输出立即翻转成Vo=1,DIS端开路,电源通过RT向CT充电,暂稳态开始。
经过时间TD后,CT上电压上升到>2/3VDD时,输入又成为R=1,S=1,这时负脉冲已经消失,输出又翻转成Vo=0,暂稳态结束。
这时内部放电开关接通,DIS端接地,CT上电荷很快放到零,为下一次定时控制作准备。
电路的定时时间TD=1.1RTCT。
这两种单稳电路常用作定时延时控制。
图5脉冲启动型单稳电路
3555双稳电路
常见的555双稳电路有两种:
1)R-S触发器型双稳
将555电路的6、2脚作为两个控制输入端,7端不用,就成为一个R-S触发器。
注意两个输入端的触发电平和阈值电压不同,如图6(a)所示,有时可能只有一个控制端,这时另外一个控制端要设法接死,根据电路要求可以把R端接到电源端,如图6(b)所示,也可以把S接地,用R端作输入。
有两个输入端的双稳电路常用作电机调速、电源上下限告警等用途。
有一个输入端的双稳电路作为单端比较器用于各种检测电路。
图6555构成R-S触发器
2)施密特触发器型双稳
将555电路的6、2脚并接起来接成只有一个输入端的触发器,如图7(a)所示,这个触发器输出电压和输入电压的关系是一个长方形的回线形,如图7(b)所示,从曲线可知,当输入V1=0时输出Vo=1,当输入电压从0上升到>2/3VDD后,Vo翻转成0,当输入电压从最高值下降到<1/3VDD后,Vo又翻转成1。
由于它的输入有两个不同的阈值电压,所以,这种电路常用于电子开关,各种控制电路、波形的变换和整形,如图8所示。
图7555构成施密特触发器
图8波形的变换和整形
4555无稳电路(振荡器)
由555定时器构成的多谐振荡器如图9(a)所示,其工作波形见图9(b)。
接通电源后,电源VDD通过R1和R2对电容C充电,当Uc<1/3VDD时,振荡器输出Vo=1,放电管截止。
当Uc充电到≥2/3VDD后,振荡器输出Vo翻转成0,此时放电管导通,使放电端(DIS)接地,电容C通过R2对地放电,使Uc下降。
当Uc下降到≤1/3VDD后,振荡器输出Vo又翻转成1,此时放电管又截止,使放电端(DIS)不接地,电源VDD通过R1和R2又对电容C充电,又使Uc从1/3VDD上升到2/3VDD,触发器又发生翻转,如此周而复始,从而在输出端Vo得到连续变化的振荡脉冲波形。
脉冲宽度TL≈0.7R2C,由电容C放电时间决定;TH=0.7(R1+R2)C,由电容C充电时间决定,脉冲周期T≈TH+TL。
图9555构成多谐振荡器
上面仅讨论了由555定时器构成的几种典型应用实例。
实际上,由于555定时器灵敏度高,功能灵活,因而在电子电路中获得广泛应用。
这里我们这里按555电路的结构特点进行分类和归纳,把555电路分为3大类、8种、共18个单元电路。
每个电路除画出它的标准图型,指出他们的结构特点或识别方法外,还给出了计算公式和他们的用途。
方便大家识别、分析555电路。
555电路在应用和工作方式上一般可归纳为3类。
每类工作方式又有很多个不同的电路。
在实际应用中,除了单一品种的电路外,还可组合出很多不同电路,如:
多个单稳、多个双稳、单稳和无稳,双稳和无稳的组合等。
这样一来,电路变的更加复杂。
为了便于我们分析和识别电路,更好的理解555电路,下面将分别介绍这3类电路。
单稳类电路
单稳工作方式,它可分为3种。
见图示。
第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1和1.1.2为代号。
他们的输入端的形式,也就是电路的结构特点是:
“RT-6.2-CT”和“CT-6.2-RT”。
第2种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。
他们的输入特点都是“RT-7.6-CT”,都是从2端输入。
1.2.1电路的2端不带任何元件,具有最简单的形式;1.2.2电路则带有一个RC微分电路。
第3种(图3)是压控振荡器。
单稳型压控振荡器电路有很多,都比较复杂。
为简单起见,我们只把它分为2个不同单元。
不带任何辅助器件的电路为1.3.1;使用晶体管、运放放大器等辅助器件的电路为1.3.2。
图中列出了2个常用电路。
双稳类电路
这里我们将对555双稳电路工作方式进行总结、归纳。
555双稳电路可分成2种。
第一种(见图1)是触发电路,有双端输入(2.1.1)和单端输入(2.1.2)2个单元。
单端比较器(2.1.2)可以是6端固定,2段输入;也可是2端固定,6端输入。
第2种(见图2)是施密特触发电路,有最简单形式的(2.2.1)和输入端电阻调整偏置或在控制端(5)加控制电压VCT以改变阀值电压的(2.2.2)共2个单元电路。
双稳电路的输入端的输入电压端一般没有定时电阻和定时电容。
这是双稳工作方式的结构特点。
2.2.2单元电路中的C1只起耦合作用,R1和R2起直流偏置作用。
无稳类电路
第三类是无稳工作方式。
无稳电路就是多谐振荡电路,是555电路中应用最广的一类。
电路的变化形式也最多。
为简单起见,也把它分为三种。
第一种(见图1)是直接反馈型,振荡电阻是连在输出端VO的。
第二种(见图2)是间接反馈型,振荡电阻是连在电源VCC上的。
其中第1个单元电路(3.2.1)是应用最广的。
第2个单元电路(3.2.2)是方波振荡电路。
第3、4个单元电路都是占空比可调的脉冲振荡电路,功能相同而电路结构略有不同,因此分别以3.2.3a和3.2.3b的代号。
第三种(见图3)是压控振荡器。
由于电路变化形式很复杂,为简单起见,只分成最简单的形式(3.3.1)和带辅助器件的(3.3.2)两个单元。
图中举了两个应用实例。
无稳电路的输入端一般都有两个振荡电阻和一个振荡电容。
只有一个振荡电阻的可以认为是特例。
例如:
3.1.2单元可以认为是省略RA的结果。
有时会遇上7.6.2三端并联,只有一个电阻RA的无稳电路,这时可把它看成是3.2.1单元电路省掉RB后的变形。
以上归纳了555的3类8种18个单元电路,虽然它们不可能包罗所有555应用电路,古话讲:
万变不离其中,相信它对我们理解大多数555电路还是很有帮助的。
各种应用电路
555触摸定时开关
集成电路IC1是一片555定时电路,在这里接成单稳态电路。
平时由于触摸片P端无感应电压,电容C1通过555第7脚放电完毕,第3脚输出为低电平,继电器KS释放,电灯不亮。
当需要开灯时,用手触碰一下金属片P,人体感应的杂波信号电压由C2加至555的触发端,使555的输出由低变成高电平,继电器KS吸合,电灯点亮。
同时,555第7脚内部截止,电源便通过R1给C1充电,这就是定时的开始。
当电容C1上电压上升至电源电压的2/3时,555第7脚道通使C1放电,使第3脚输出由高电平变回到低电平,继电器释放,电灯熄灭,定时结束。
定时长短由R1、C1决定:
T1=1.1R1*C1。
按图中所标数值,定时时间约为4分钟。
D1可选用1N4148或1N4001。
相片曝光定时器
附图电路是用555单稳电路制成的相片曝光定时器。
用人工启动式单稳电路。
工作原理:
电源接通后,定时器进入稳态。
此时定时电容CT的电压为:
VCT=VCC=6V。
对555这个等效触发器来讲,两个输入都是高电平,即VS=0。
继电器KA不吸合,常开点是打开的,曝光照明灯HL不亮。
按一下按钮开关SB之后,定时电容CT立即放到电压为零。
于是此时555电路等效触发的输入成为:
R=0、S=0,它的输出就成高电平:
V0=1。
继电器KA吸动,常开接点闭合,曝光照明灯点亮。
按钮开关按一下后立即放开,于是电源电压就通过RT向电容CT充电,暂稳态开始。
当电容CT上的电压升到2/3VCC既4伏时,定时时间已到,555等效电路触发器的输入为:
R=1、S=1,于是输出又翻转成低电平:
V0=0。
继电器KA释放,曝光灯HL熄灭。
暂稳态结束,有恢复到稳态。
曝光时间计算公式为:
T=1.1RT*CT。
本电路提供参数的延时时间约为1秒~2分钟,可由电位器RP调整和设置。
电路中的继电器必需选用吸合电流不应大于30mA的产品,并应根据负载(HL)的容量大小选择继电器触点容量。
单电源变双电源电路
附图电路中,时基电路555接成无稳态电路,3脚输出频率为20KHz、占空比为1:
1的方波。
3脚为高电平时,C4被充电;低电平时,C3被充电。
由于VD1、VD2的存在,C3、C4在电路中只充电不放电,充电最大值为EC,将B端接地,在A、C两端就得到+/-EC的双电源。
本电路输出电流超过50mA。
简易催眠器
时基电路555构成一个极低频振荡器,输出一个个短的脉冲,使扬声器发出类似雨滴的声音(见附图)。
扬声器采用2英寸、8欧姆小型动圈式。
雨滴声的速度可以通过100K电位器来调节到合适的程度。
如果在电源端增加一简单的定时开关,则可以在使用者进入梦乡后及时切断电源。
直流电机调速控制电路
这是一个占空比可调的脉冲振荡器。
电机M是用它的输出脉冲驱动的,脉冲占空比越大,电机电驱电流就越小,转速减慢;脉冲占空比越小,电机电驱电流就越大,转速加快。
因此调节电位器RP的数值可以调整电机的速度。
如电极电驱电流不大于200mA时,可用CB555直接驱动;如电流大于200mA,应增加驱动级和功放级。
图中VD3是续流二极管。
在功放管截止期间为电驱电流提供通路,既保证电驱电流的连续性,又防止电驱线圈的自感反电动势损坏功放管。
电容C2和电阻R3是补偿网络,它可使负载呈电阻性。
整个电路的脉冲频率选在3~5千赫之间。
频率太低电机会抖动,太高时因占空比范围小使电机调速范围减小。
用555制作的D类放大器
我们知道D类放大器具有体积小、效率高的特点。
这里介绍一个用555电路制作的简易D类放大器。
它是利用555电路构成一个可控的多谐振荡器,音频信号输入到控制端得到调宽脉冲信号(如图),基本能满足一般的听音要求。
由IC555和R1、R2、C1等组成100KHz可控多谐振荡器,占空比为50%,控制端5脚输入音频信号,3脚便得到脉宽与输入信号幅值成正比的脉冲信号,经L、C3接调、滤波后推动扬声器。
风扇周波调速电路
夏天要来了,电风扇又得派上用场。
这里介绍一个电风扇模拟阵风周波调速电路,可以为将我们家里的老式风扇增加一个实用功能,也算是一个迎接夏天到来的准备吧。
下面介绍其工作原理。
电路见图1a。
电路中NE555接成占空比可调的方波发生器,调节RW可改变占空比。
在NE555的3脚输出高电平期间,过零通断型光电耦合器MOC3061初级得到约10mA正向工作电流,使内部硅化镓红外线发射二极管发射红外光,将过零检测器中光敏双向开关于市电过零时导通,接通电风扇电机电源,风扇运转送风。
在NE555的3脚输出低电平期间,双向开关关断,风扇停转。
MOC3061本身具有一定驱动能力,可不加功率驱动元件而直接利用MOC3061的内部双向开关来控制电风扇电机的运转。
RW为占空比调节电位器,亦即电风扇单位时间内(本电路数据约为20秒)送风时间的调节,改变C2的取值或RW的取值可改变控制周期。
图1b电路为MOC3061的典型功率扩展电路,在控制功率较大的电机时,应考虑使用功率扩展电路。
制作时,可参考图示参数选择器件。
由于电源采用电容压降方式,请自制时注意安全,人体不能直接触摸电路板。
电热毯温控器
一般电热毯有高温、低温两档。
使用时,拨在高温档,入睡后总被热醒;拨在低温档,有时醒来会觉得温度不够。
这里介绍一种电热毯温控器,它可以把电热毯的温度控制在一个合适的范围。
工作原理:
电路如图所示。
图中IC为NE555时基电路。
RP3为温控调节电位器,其滑动臂电位决定IC的触发电位V2和阀电位Vf,且V5=Vf=2Vz。
220V交流电压经C1、R1限流降压,D1、D2整流、C2滤波,DW稳压后,获得9V左右的电压供IC用。
室温下接通电源,因已调V2Vz,V6≥Vf时,IC翻转,3脚变为低电平,BCR截止,电热丝停止发热,温度开始逐渐下降,BG1的ICEO随之逐渐减小,V2、V6降低。
当V6元件选择:
BG1可选用3AX、3AG等PNP型锗管;BCR用400V以上的小型双向可控硅,其它元件按图标选用。
制作要点:
热敏传感器BG1可用耐温的细软线引出,并将其连同管脚接头装入。
一电容器铝壳内,注入导热硅脂,制成温度探头。
使用时,把该温度探头放在适当部位即可。
多用途延迟开关电源插座
家用电器、照明灯等电源的开或关,常常需要在不同的时间延迟后进行,本电源插座即可满足这种不同的需要。
工作原理:
电路如图所示,它由降压、整流、滤波及延时控制电路等部分组成。
按下AN,12V工作电压加至延迟器上,这时NE555的②脚和⑥脚为高电平,则NE555的③脚输出为低电平,因此继电器K得电工作,触点K1-1向上吸合,这时“延关”插座得电,而“延开”插座无电。
这时电源通过电容器C3、电位器RP、电阻器R3至“地”,对C3进行充电,随着C3上的电压升高,NE555的②、⑥脚的电压越来越往下降,当此电压下降至2/3Vcc时,NE555的③脚输出由低电平跳变为高电平,这时继电器将失电而不工作,则其控制触点恢复原位,则“延关”插座失电,而“延开”插座得电。
就这样满足了不同的需求,LED、LED2作相应的指示。
本电路只要元器件是好的,装配无误,装好即可正常工作。
延时时间由C3及PR+R3的值决定,T≈1.1C3(PR+R3)。
RP指有效部分。
C3可用数十pF至1000μF的电容器,(PR+R3)的值可取2K~10MΩ。
C1的耐压值应≥400V,R1的功率应≥2W,AN按钮开关可选用K-18型的,继电器的型号为JQX-13F-12V。
其它元器件无特殊要求。
新颖实用的直流低压稳压电源
开关电源部分的VD1-VD4、R1、C1、C2组成整流滤波电路。
NE555和R2、R3、C4、VD6等元件组成多谐振荡电路,其频率约20KHz。
R4、C3、VD5组成降压稳压电路,为NE555提供12V工作电源。
大功率管VT1及变压器T构成开关电路。
VT1的工作状态由NE555的③脚控制,导通时间由脉冲宽度决定,调整R3即可改变脉冲宽度。
脉冲宽度变宽,输出电压升高;脉冲宽度变窄,输出电压降低。
VT2及R8、R9、C6组成过流保护电路。
当负载过重或发生短路故障时,VT2导通,强迫NE555复位停振,从而保护VT1不致损坏。
C7、R10为保护网络,防止VT1的c-e结被瞬间脉冲击穿。
两个次级绕组经整流滤波后分别输出20V及12V。
为了使制作简单,开关电源设计成不能自动稳压的,其功能类似于变压器,只是实现轻型化的隔离降压作用,稳压功能由后面的稳压电路实现。
12V直流电压经7805稳压后输出+5V电压;20V直流电压送至可调稳压电路。
两者不共地,以便于进行加减组合输出多种电压。