第28章锐角三角函数教案.docx
《第28章锐角三角函数教案.docx》由会员分享,可在线阅读,更多相关《第28章锐角三角函数教案.docx(38页珍藏版)》请在冰豆网上搜索。
第28章锐角三角函数教案
28.1锐角三角函数
(1)
一、教学目标
1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
2、能根据正弦概念正确进行计算
3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。
二、教学重点、难点
重点:
理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.
难点:
引导学生比较、分析并得出:
对任意锐角,它的对边与斜边的比值是固定值的事实。
三、教学过程
(一)复习引入
操场里有一个旗杆,老师让小明去测量旗杆高度。
(演示学校操场上的国旗图片)
小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米.然后他很快就算出旗杆的高度了。
你想知道小明怎样算出的吗?
师:
通过前面的学习我们知道,利用相似三角形的方法可以测算出旗杆的大致高度;
实际上我们还可以象小明那样通过测量一些角的度数和一些线段的长度,来测算出旗杆的高度。
这就是我们本章即将探讨和学习的利用锐角三角函数来测算物体长度或高度的方法。
下面我们大家一起来学习锐角三角函数中的第一种:
锐角的正弦
(二)实践探索
为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉。
现测得斜坡与水平面所成角的度数是30o,为使出水口的高度为35m,那么需要准备多长的水管?
分析:
问题转化为,在Rt△ABC中,∠C=90o,∠A=30o,BC=35m,求AB
根据“再直角三角形中,30o角所对的边等于斜边的一半”,即
可得AB=2BC=70m.即需要准备70m长的水管
结论:
在一个直角三角形中,如果一个锐角等于30o,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于
如图,任意画一个Rt△ABC,使∠C=90o,∠A=45o,计算∠A的对边与斜边的比
,能得到什么结论?
分析:
在Rt△ABC 中,∠C=90o,由于∠A=45o,所以Rt△ABC是等腰直角三角形,由
勾股定理得
,
故
结论:
在一个直角三角形中,如果一个锐角等于45o,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于
一般地,当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?
如图:
Rt△ABC与Rt△A`B`C`,∠C=∠C`=90o,∠A=∠A`=α,那么
与
有什么关系
分析:
由于∠C=∠C`=90o,∠A=∠A`=α,所以Rt△ABC∽Rt△A`B`C`,
,即
结论:
在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比也是一个固定值。
认识正弦
如图,在Rt△ABC中,∠A、∠B、∠C所对的边分别记为a、b、c。
师:
在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦。
记作sinA。
板书:
sinA=
(举例说明:
若a=1,c=3,则sinA=
)
注意:
1、sinA不是sin与A的乘积,而是一个整体;
2、正弦的三种表示方式:
sinA、sin56°、sin∠DEF
3、sinA是线段之间的一个比值;sinA没有单位。
提问:
∠B的正弦怎么表示?
要求一个锐角的正弦值,我们需要知道直角三角形中的哪些边?
(三)教学互动
例1如图,在
中,
求sin
和sin
的值.
解答按课本
(四)巩固再现
1.三角形在正方形网格纸中的位置如图所示,则sinα的值是﹙﹚
A.
B.
C.
D.
2.如图,在直角△ABC中,∠C=90o,若AB=5,AC=4,则sinA=()
A.
B.
C.
D.
3.在△ABC中,∠C=90°,BC=2,sinA=
,则边AC的长是()
A.
B.3C.
D.
四、布置作业
28.1锐角三角函数
(2)
一、教学目标
1、使学生知道当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实.
2、逐步培养学生观察、比较、分析、概括的思维能力.
二、教学重点、难点
重点:
理解余弦、正切的概念
难点:
熟练运用锐角三角函数的概念进行有关计算
三、教学过程
(一)复习引入
1、口述正弦的定义
2、
(1)如图,已知AB是⊙O的直径,点C、D在⊙O上,且AB=5,BC=3.
则sin∠BAC=;sin∠ADC=.
(2)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D。
已知AC=
,BC=2,那么sin∠ACD=()
A.
B.
C.
D.
(二)实践探索
一般地,当∠A取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?
如图:
Rt△ABC与Rt△A`B`C`,∠C=∠C`=90o,∠B=∠B`=α,
那么
与
有什么关系?
分析:
由于∠C=∠C`=90o,∠B=∠B`=α,
所以Rt△ABC∽Rt△A`B`C`,
,即
结论:
在直角三角形中,当锐角B的度数一定时,不管三角形的大小如何,∠B的邻边与斜边的比也是一个固定值。
如图,在Rt△ABC中,∠C=90o,把锐角B的邻边与斜边的比叫做∠B的余弦,记作cosB即
把∠A的对边与邻边的比叫做∠A的正切.记作tanA,即
锐角A的正弦,余弦,正切都叫做∠A的锐角三角函数.
(三)教学互动
例2:
如图,在
中,
BC=6,
求cos
和tan
的值.
解:
.
又
例3:
(1)如图
(1),在
中,
求
的度数.
(2)如图
(2),已知圆锥的高AO等于圆锥的底面半径OB的
倍,求
.
(四)巩固再现
1.在
中,∠C=90°,a,b,c分别是∠A、∠B、∠C的对边,则有()
A.
B.
C.
D.
本题主要考查锐解三角函数的定义,同学们只要依据
的图形,不难写出
,从而可判断C正确.
2.在
中,∠C=90°,如果
那么
的值为()
A.
B.
C.
D.
分析?
本题主要考查锐解三角函数及三角变换知识。
其思路是:
依据条件
,可求出
;再由
,可求出
,从而
,故应选D.
3、如图:
P是∠
的边OA上一点,且P
点的坐标为(3,4),
则cos
=_____________.
4、P78练习1、2、3
四、布置作业
P82.1
28.1锐角三角函数(3)
一、教学目标
1、使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系.
2、使学生了解同一个锐角正弦与余弦之间的关系
3、使学生了解正切与正弦、余弦的关系
4、使学生了解三角函数值随锐角的变化而变化的情况
二、教学重点、难点
重点:
三个锐角三角函数间几个简单关系
难点:
能独立根据三角函数的定义推导出三个锐角三角函数间几个简单关系
三、教学过程
(一)复习引入
叫学生结合直角三角形说出正弦、余弦、正切的定义
(二)实践探索
1、从定义可以看出
与
有什么关系?
与
呢?
满足这种关系的
与
又是什么关系呢?
2、利用定义及勾股定理你还能发现
与
的关系吗?
3、再试试看
与
和
存在特殊关系吗?
经过教师引导学生探索之后总结出如下几种关系:
(1)若
那么
=
或
=
(2)
(3)
4、在正弦中它的值随锐角的增大而增大还是随锐角的增大而减少?
为什么?
余弦呢?
正切呢?
通过一番讨论后得出:
(1)锐角的正弦值随角度的增加(或减小)而增加(或减小);
(2)锐角的余弦值随角度的增加(或减小)而减小(或增加);
(3)锐角的正切值随角度的增加(或减小)而增加(或减小)。
(三)教学互动
(1)判断题:
i 对于任意锐角α,都有0<sinα<1和0<cosα<1 ( )
ii 对于任意锐角α1,α2,如果α1<α2,那么cosα1<cosα2 ( )
iii 如果sinα1<sinα2,那么锐角α1<锐角α2I ( )
iv 如果cosα1<cosα2,那么锐角α1>锐角α2 ( )
(2)在Rt△ABC中,下列式子中不一定成立的是______
A.sinA=sinBB.cosA=sinBC.sinA=cosBD.sin(A+B)=sinC
(3)在
A.0°<∠A≤30°B.30°<∠A≤45°
C.45<∠A≤60°D.60°<∠A<90°
四、布置作业
课题30°、45°、60°角的三角函数值
一、教学目标
1、能推导并熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应的锐角度数。
2、能熟练计算含有30°、45°、60°角的三角函数的运算式
二、教学重点、难点
重点:
熟记30°、45°、60°角的三角函数值,能熟练计算含有30°、45°、60°角的三角函数的运算式
难点:
30°、45°、60°角的三角函数值的推导过程
三、教学过程
(一)复习引入
还记得我们推导正弦关系的时候所到结论吗?
即
,
你还能推导出
的值及30°、45°、60°角的其他三角函数值吗?
(二)实践探索
1.让学生画30°45°60°的直角三角形,分别求sin30°cos45°tan60°
归纳结果
30°
45°
60°
sinA
cosA
tanA
(三)教学互动
例求下列各式的值:
(1)cos
+cos
+
sin
sin
(2)
解
(1)原式=
(2)原式=
=
说明:
本题主要考查特殊角的正弦余弦值,解题关键是熟悉并牢记特殊角的正弦余弦值。
易错点因没有记准特殊角的正弦余弦值,造成计算错
例3:
(1)如图
(1),在
中,
求
的度数.
(2)如图
(2),已知圆锥的高AO等于圆锥的底面半径OB的
倍,求
.
解:
(1)在图
(1)中,
(2)在图
(2)中.
(四)巩固再现
1、P79例3
2、P80练习1、2
3、随机抽查学生对79页的表的记忆情况
四、布置作业
P85习题28.1.3
课题用计算器求锐角三角函数值和根据三角函数值求锐角
一、教学目标
1、让学生熟识计算器一些功能键的使用
2、会熟练运用计算器求锐角的三角函数值和由三角函数值来求角
二、教学重点、难点
重点:
运用计算器处理三角函数中的值或角的问题
难点:
知道值求角的处理
三、教学过程
(一)复习引入
通过上课的学习我们知道,当锐角A是等特殊角时,可以求得这些角的正弦、余弦、正切值;如果锐角A不是这些特殊角,怎样得到它的三角函数值呢?
我们可以用计算器来求锐角的三角函数值。
(二)实践探索
1、用计算器求锐角的正弦、余弦、正切值
利用求下列三角函数值(这个教师可完全放手学生去完成,教师只需巡回指导)
sin37°24′sin37°23′cos21°28′cos38°12′
tan52°;tan36°20′;tan75°17′;
2.熟练掌握用科学计算器由已知三角函数值求出相应的锐角.
例如:
sinA=0.9816.∠A=.
cosA=0.8607,∠A=;
tanA=0.1890,∠A=;
tanA=56.78,∠A=.
3、强化
完成P81页的练习1、2
四、布置作业
P82习题28.1.4、5
28.2解直角三角形
(1)
一、教育目标
1、使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.
2、通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.
3、渗透数形结合的数学思想,培养学生良好的学习习惯.
二、教学重点、难点
1.重点:
直角三角形的解法.
2.难点:
三角函数在解直角三角形中的灵活运用.
三、教学步骤
(一)复习引入
1.在三角形中共有几个元素?
2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?
(1)边角之间关系
如果用
表示直角三角形的一个锐角,那上述式子就可以写成.
(2)三边之间关系
a2+b2=c2(勾股定理)
(3)锐角之间关系∠A+∠B=90°.
以上三点正是解直角三角形的依据,通过复习,使学生便于应用.
(二)教学过程
1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?
激发了学生的学习热情.
2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?
”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?
(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).
3.例题
例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b=
,a=
,解这个三角形.
解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.
解∵tanA=
=
=
,
∴
.
∴
.
∴C=2b=
.
例2在Rt△ABC中,∠B=35,b=20,解这个三角形.
引导学生思考分析完成后,让学生独立完成
在学生独立完成之后,选出最好方法,教师板书.
.
,
.
完成之后引导学生小结“已知一边一角,如何解直角三角形?
”
答:
先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底
注意:
例1中的b和例2中的c都可以利用勾股定理或其他三角函数来计算,但计算出的值可能有些少差异,这都是正常的。
4.巩固练习
P91
说明:
解直角三角形计算上比较繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.
(四)总结与扩展
1.请学生小结:
在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.
2.出示图表,请学生完成
a
b
c
A
B
1
√
√
2
√
√
3
√
b=a•cotA
√
4
√
b=a•tanB
√
5
√
√
6
a=b•tanA
√
√
7
a=b•cotB
√
√
8
a=c•sinA
b=c•cosA
√
√
9
a=c•cosB
b=c•sinB
√
√
10
不可求
不可求
不可求
√
√
注:
上表中“√”表示已知。
四、布置作业
28.2解直角三角形
(1)
一、教学目标
1、使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决.
2、逐步培养学生分析问题、解决问题的能力.
3、渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识
二、教学重点、难点
重点:
要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决.
难点:
实际问题转化成数学模型
三、教学过程
(一)复习引入
1.直角三角形中除直角外五个元素之间具有什么关系?
请学生口答.
2、在中Rt△ABC中已知a=12,c=13求角B应该用哪个关系?
请计算出来。
(二)实践探索
要想使人安全地攀上斜靠在墙面上的梯子的顶端.梯子与地面所成的角
一般要满足
,(如图).现有一个长6m的梯子,问:
(1)使用这个梯子最高可以安全攀上多高的墙(精确到0.1m)
(2)当梯子底端距离墙面2.4m时,梯子与地面所成的角
等于多少(精确到1o) 这时人是否能够安全使用这个梯子
引导学生先把实际问题转化成数学模型
然后分析提出的问题是数学模型中的什么量
在这个数学模型中可用学到的什么知识来求
未知量?
几分钟后,让一个完成较好的同学示范。
(三)教学互动
例32003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350km的圆形轨道上运行.如图,当飞船运行到地球表面上P点的正上方时,从飞船上最远能直接看到的地球上的点在什么位置?
这样的最远点与P点的距离是多少?
(地球半径约为6400km,结果精确到0.1km)
分析:
从飞船上能最远直接看到的地球上的点,应是视线与地球相切时的切点.
如图,⊙O表示地球,点F是飞船的位置,FQ是⊙O的切线,切点Q是从飞船
观测地球时的最远点.弧PQ的长就是地面上P,Q两点间的距离.为计算弧PQ的长需先求出
(即
)
解:
在上图中,FQ是⊙O的切线,
是直角三角形,
弧PQ的长为
由此可知,当飞船在p点正上方时,从飞船观测地球时的最远点距离P点约
2009.6km.
(四)巩固再现
P89练习1,P92习题28.2.1
四、布置作业
P922,3
28.2解直角三角形
(2)
一、教学目标
1、使学生了解什么是仰角和俯角
2、逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法.
3、巩固用三角函数有关知识解决问题,学会解决观测问题.
二、教学重点、难点
重点:
用三角函数有关知识解决观测问题
难点:
学会准确分析问题并将实际问题转化成数学模型
三、教学过程
(一)复习引入
平时我们观察物体时,我们的视线相对于水平线来说可有几种情况?
(三种,重叠、向上和向下)
结合示意图给出仰角和俯角的概念
(二)教学互动
例4热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30o,看这栋离楼底部的俯角为60o,热气球与高楼的水平距离为120m.这栋高楼有多高(结果精确到0.1m)?
分析:
在
中,
,
.所以可以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.
解:
如图,
,
答:
这栋楼高约为277.1m.
(三)巩固再现
1、为测量松树AB的高度,一个人站在距松树15米的E处,测得仰角∠ACD=52°,已知人的高度是1.72米,求树高(精确到0.01米).
2、在宽为30米的街道东西两旁各有一楼房,从东楼底望西楼顶仰角为45°,从西楼顶望东楼顶,俯角为10°,求西楼高(精确到0.1米).
3、上午10时,我军驻某海岛上的观察所A发现海上有一艘敌军舰艇正从C处向海岛驶来,当时的俯角
,经过5分钟后,舰艇到达D处,测得俯角
。
已知观察所A距水面高度为80米,我军武器射程为100米,现在必须迅速计算出舰艇何时驶入我军火力射程之内,以便及时还击。
解:
在直角三角形ABC和直角三角形ABD中,我们可以分别求出:
(米)
(米)
(米)
舰艇的速度为
(米/分)。
设我军火力射程为
米,现在需算出舰艇从D到E的时间
(分钟)
我军在12.5分钟之后开始还击,也就是10时17分30秒。
4、小结:
谈谈本节课你的收获是什么?
四、布置作业
P93.7
28.2解直角三角形(3)
一、教学目标
1、使学生了解方位角的命名特点,能准确把握所指的方位角是指哪一个角
2、逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法.
3、巩固用三角函数有关知识解决问题,学会解决方位角问题.
二、教学重点、难点
重点:
用三角函数有关知识解决方位角问题
难点:
学会准确分析问题并将实际问题转化成数学模型
三、教学过程
(一)复习引入
1、叫同学们在练习薄上画出方向图(表示东南西北四个方向的)。
2、依次画出表示东南方向、西北方向、北偏东65度、南偏东34度方向的射线
(二)教学互动
例5如图,一艘海轮位于灯塔P的北偏东65
方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34
方向上的B处.这
时,解:
如图,在
中,
在
中,
.
因此.当海轮到达位于灯塔P的南偏东340方向时,它距离灯塔P大约130.23海里.海轮所在的B处距离灯塔P有多远(精确到0.01海里)?
(三)巩固再现
1、P91.1
2、上午10点整,一渔轮在小岛O的北偏东30°方向,距离等于10海里的A处,正以每小时10海里的速度向南偏东60°方向航行.那么渔轮到达小岛O的正东方向是什么时间?
(精确到1分).
3、如图6-32,海岛A的周围8海里内有暗礁,鱼船跟踪鱼群由西向东航行,在点B处测得海岛A位于北偏东60°,航行12海里到达点C处,又测得海岛A位于北偏东30°,如果鱼船不改变航向继续向东航行.有没有触礁的危险?
四、布置作业
P93.9
28.2解直角三角形(4)
一、教学目标
1、巩固用三角函数有关知识解决问题,学会解决坡度问题.
2、逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法.
3、培养学生用数学的意识,渗透理论联系实际的观点.
二、教学重点、难点
重点:
解决有关坡度的实际问题.
难点:
理解坡度的有关术语.
三、教学过程
(一)复习引入
1.讲评作业:
将作业中学生普遍出现问题之处作一讲评.
2.创设情境,导入新课.
例同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:
如图6-33
水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m).
同学们因为你称他们为工程师而骄傲,满腔热情,但一见问题又手足失措,因为连题中的术语坡度、坡角等他们都不清楚.这时,教师应根据学生想学的心情,及时点拨.
(二)教学互动
通过前面例题的教学,学生已基本了解解实际应用题的方法,会将实际问题抽象为几何问题加以解决.但此题中提到的坡度与坡角的概念对学生来说比较生疏,同时这两个概念在实际生产、生活中又有十分重要的应用,因此本节课关键是