五年级上册第四单元备课教案完整版.docx

上传人:b****8 文档编号:11318086 上传时间:2023-02-26 格式:DOCX 页数:24 大小:26.27KB
下载 相关 举报
五年级上册第四单元备课教案完整版.docx_第1页
第1页 / 共24页
五年级上册第四单元备课教案完整版.docx_第2页
第2页 / 共24页
五年级上册第四单元备课教案完整版.docx_第3页
第3页 / 共24页
五年级上册第四单元备课教案完整版.docx_第4页
第4页 / 共24页
五年级上册第四单元备课教案完整版.docx_第5页
第5页 / 共24页
点击查看更多>>
下载资源
资源描述

五年级上册第四单元备课教案完整版.docx

《五年级上册第四单元备课教案完整版.docx》由会员分享,可在线阅读,更多相关《五年级上册第四单元备课教案完整版.docx(24页珍藏版)》请在冰豆网上搜索。

五年级上册第四单元备课教案完整版.docx

五年级上册第四单元备课教案完整版

集团标准化办公室:

[VV986T-J682P28-JP266L8-68PNN]

 

五年级上册第四单元备课教案

 

解简易方程

 

杜玉梅

 

第四单元简易方程

(一)教学目标

1.使学生初步认识用字母表示数的意义和作用,能够用字母表示学过的运算定律和计算公式,能够在具体的情境中用字母表示常见的数量关系。

初步学会根据字母所取的值,求含有字母式子的值。

2.使学生初步了解方程的意义,初步理解等式的基本性质,能用等式的性质解简易方程。

3.使学生感受数学与现实生活的联系,初步学会列方程解决一些简单的实际问题。

培养学生根据具体情况,灵活选择算法的意识和能力。

(二)教材说明

1.本单元的内容结构及其地位作用。

本单元的主要学习内容是用字母表示数和解简易方程,以及简易方程在解决一些实际问题中的运用。

这些内容是在学生学了一定的算术知识(如整数、小数的四则运算及其应用),已初步接触了一点代数知识(如用字母表示运算定律,用○、△或□表示数)的基础上,进行学习的。

一般地说,在小学教学简易方程有以下几方面的意义。

一是有助于培养学生的抽象概括能力,发展学生思维的灵活性。

因为对小学生来说,从具体事物的个数抽象出数是认识上的一个飞跃,现在由具体的、确定的数过渡到用字母表示抽象的、可变的数,更是认识上的一个飞跃。

而且,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,这又是数学思想方法认识上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。

二是有助于巩固和加深理解所学的算术知识。

通过用字母表示所学过的数量关系、运算定律以及一些图形的周长、面积计算公式,可以使学生加深对这些知识的理解。

同时,由于用字母表示比用文字表述更简明易记,所以便于学生巩固所学知识。

三是有利于加强中小学数学的衔接。

让学生初步接触一点代数知识,能使学生摆脱算术思维方法中的某些局限性(逆向思考,未知数不参加运算,等于缺少一个条件,思维的步骤增加),为进一步学习代数知识做好认识的准备和铺垫。

本单元的内容分为两节,第一节的主要内容是用字母表示数、表示运算定律、计算公式和数量关系。

第二节的主要内容是程的意义,等式的基本性质和解简易方程,以及列方程解决一些比较简单的实际问题。

2.解简易方程

第一课时方程的意义

教学内容:

数学书P53-54及“做一做”,练习十一1-3题。

教学目标

1、初步理解方程的意义,会判断一个式子是否是方程。

2、会按要求用方程表示出数量关系。

3、培养学生观察、比较、分析概括的能力。

教学重难点:

会用方程的意义去判断一个式子是否是方程。

教学过程

一、导入新课

今天我们上课要用到一种重要的称量工具,它是什么呢对,它是天平。

同学们对天平有哪些了解呢天平由天平称与砝码组成,当放在两端托盘的物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的质量。

二、新知学习

1、实物演示,引出方程。

操作天平:

第一步,称出一只空杯子重100克,板书:

1只空杯子=100克;

第二步,往往空杯子里倒入约150毫升水(可在水中滴几滴红墨水),问:

发现了什么天平出现了倾斜,因为杯子和水的质量加起来比100克重,现在还需要增加砝码的质量。

第三步,增加100克砝码,发现了什么杯子和水比200克重。

现在,水有多重,知道吗如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢100+x>200。

第四步,再增加100克砝码,天平往砝码这边倾斜。

问:

哪边重些怎样用式子表示让学生得出:

100+x<300.

第五步,把一个100克的砝码换成50克,天平出现平衡。

现在两边的质量怎样用式子怎样表示让学生得出:

100+x=250。

像这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗对,叫方程。

请大家试着写出一个方程。

2、写方程,加深对方程的认识。

学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。

看书第54页,看书上列出的一些方程,让学生读一读。

然后小结:

一个式子要是方程需要具备哪些条件两个条件,一要是等式,二要含有求知数(即字母),这也是判断一个式子是不是方程的依据。

3、反馈练习。

完成做一做,在是方程的式子后面打上“√”。

对于不是方程的几个式子要说明其理由。

4、小结。

这节课学习了什么怎么判断一个式子是不是方程

提问:

方程是不是等式等式一定是方程吗

看“课外阅读”,了解有关方程产生的数学史。

三、练习

1、完成练习十一第2题,先让学生说出图意,再根据图意再列出相应的方程。

2、独立完成第3题,评讲时,介绍什么叫数量关系要,然后让学生先说出各幅图中的数量关系,再说出相应的方程,同一幅图由于数量关系有不同的形式,因此方程形式也可能不同。

四、作业

练习十一第1题。

第二课时

教学内容:

数学书P55-56及“做一做”。

教学目标

1、通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。

2、利用观察天平保持平衡所发现的规律能直接判断天平变化后能否保持平衡。

3、培养学生观察与概括、比较与分析的能力。

教学重难点:

理解,并能用自己的话来阐述天平保持平衡的几种变换情况,进而发现等式保持不变的规律。

教学过程

一、导入新课

同学们用天平做过实验吗今天我们就要用天平去发现一些重要的规律,有信心吗

二、新知探究

(一)探寻发现“天平保持平衡的规律1”。

第一步,出示天平,左盘放一茶壶,右盘放两茶杯,天平保持平衡。

问:

这说明什么如果设一把茶壶重a克,1个茶杯重b克,则可以用一个等式来表示:

即a=2b(板),

第二步,问:

想一想,怎样变换能使天平仍然保持平衡呢待学生思考片刻,进而问:

往两边各放一个茶杯,天平会发生什么变化教师演示加以验证,在已平衡的天平两边同时增加一个相同的杯子,天平保持平衡。

这个过程可以表示为a+b=2b+b。

第三步,问:

如果两边各放上2个茶杯,天平还保持平衡两边各放上同样的一个茶壶呢学生回答后,老师一一演示验证。

第四步,想一想,怎样变换能使天平保持平衡天平两边增加同样的物品,天平保持平衡。

如果天平两边减少同样的物品,天平会保持平衡吗

第五步,在第三步的基础上同时减少一个茶壶,天平保持平衡,用式子表示就是2a-a=2b+a-a。

因此天平保持平衡的规律概括起来可以怎么说天平两边增加或减少同样的物品,天平会保持平衡。

(课件)

第六步,应用,进一步验证。

展示数学书P55页第2幅图的场景,1个花盆和几个花瓶同样重呢该怎么办两边同时减少一个花瓶,天平保持平衡。

(二)探寻发现“天平保持平衡的规律2”。

第一步,出示天平,左盘放一瓶墨水,右盘放两个铅笔盒,天平保持平衡。

一瓶墨水等于两个铅笔盒的质量,如果设一瓶墨水重c克,1个铅笔盒重d克,则可以用一个等式来表示:

即c=2d(板),

第二步,问:

想一想,如果在左边再放上1瓶墨水,右边再放上2个铅笔盒,天平还保持平衡吗验证,天平两边加的东西不同,数量也不同,为什么还能保持平衡呢学生可能会说,因为两边增加的质量相同,肯定;同时引导,天平左边的质量在原来的基础上发生了什么变化(扩大了2倍),右边呢(也扩大了两倍)因此,天平两边尽管所增加的东西不同,数量不同,但两边质量所发生的变化是相同的,都扩大了2倍,所以天平仍然保持平衡。

用式子表示就是c×2=2d×2。

第三步,刚才的演示反过来,就是天平两边同时缩小相同的倍数,天平保持平衡,用式子表示就是2c÷2=4d÷2。

因此,天平除了在两边同时增加或减少同样的物品会保持平衡外,还可怎么变换也可以保持平衡归纳得出:

天平两边物品的质量同时扩大或缩小相同的倍数,天平保持平衡。

第四步,进一步验证,出示P56的情景,问要求1个排球和几个皮球同样重该怎么办两边质量同时缩小2倍,即把两边的球都平均分成2份,保留其中的一份,按其操作,天平保持平衡,得出结论:

1个排球和3个皮球同样重。

(三)小结天平保持平衡的变换规律,引出等式不变的规律。

通过刚才的实验,我们发现了什么,谁来总结一下。

得出天平保持平衡的变换规律:

(1)天平两边同时增加或减少同样的物品,天平保持平衡;

(2)天平两边的质量同时扩大或缩小相同的倍数,天平保持平衡。

老师引导:

我们可以发现,天平保持平衡时可以用一个等式来表示,当天平两边发生变化时,等式的两边也在发生变化,天平保持平衡,等式也保持不变。

从天平保持平衡的规律,我们可以发现等式保持不变的规律吗想一想,四人小组讨论。

交流,发现:

等式保持不变的规律:

(1)等式两边都加上或减去相同的数,等式保持不变;

(2)等式两边都乘或除以相同的数(0除外),等式不变。

三、练习。

实物演示并判断:

(准备8袋花生,4袋盐)

天平两端分别放有一袋500克的盐和两袋250克的花生。

1、当两边各增加3袋同样的花生(250克/袋)时,天平是否保持平衡为什么

2、在“1”的基础上,现在将把天平两端的东西减少,怎样变化可使天平依然保持平衡怎么想的(可抽学生上台动手操作。

3、假如天平两端只能加与先前完全一样的东西,要保持平衡可以怎么做怎么想的

4、一端放有两袋1千克的白糖,另一端放有4袋500克的盐,问一袋白糖与几袋盐同样重,怎么想的

四、小结。

有什么收获还有什么问题

第三课时

教学内容:

数学书P57,及“做一做”,练习十一第4题。

教学目标

1、结合具体的题目,让学生初步理解方程的解与解方程的含义。

2、会检验一个具体的值是不是方程的解,掌握检验的格式。

3、进一步提高学生比较、分析的能力。

教学重难点:

比较方程的解和解方程这两个概念的含义。

教学过程:

一、导入新课

上一节课,我们学习了什么

复习天平保持平衡的规律及等式保持不变的规律。

学习这些规律有什么用呢从这节课开始我们就会逐渐发现到它的重要作用了。

二、新知学习。

1、解决问题。

出示P57的题目,从图上可以获取哪些数学信息天平保持平衡说明什么杯子与水的质量加起来共重250克。

能用一个方程来表示这一等量关系吗得到:

100+x=250,x是多少方程左右两边才相等呢也就是求杯子中水究竟有多重。

如何求到x等于多少呢学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。

全班交流。

可能有以下四种思路:

(1)观察,根据数感直接找出一个x的值代入方程看看左边是否等于250。

(2)利用加减法的关系:

250-100=150。

(3)把250分成100+50,再利用等式不变的规律从两边减去100,或者利用对应的关系,得到x的值。

(4)直接利用等式不变的规律从两边减去100。

对于这些不同的方法,分别予以肯定。

从而得到x的值等于150,将150代入方程,左右两边相等。

3、认识、区别方程的解和解方程。

得出方程的解与解方程的含:

像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。

而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求100+x=250的解的过程就是解方程。

这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢

方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。

4、练习。

(做一做)

齐读题目要求。

怎么判断X=3是不是方程的解将x=5代入方程之中看左右两边是否相等,写作格式是:

方程左边=5x

=5×3

=15

=方程右边

所以,x=3是方程的解。

用同样的方法检查x=2是不是方程5x=15的解。

二、作业。

独立完成练习十一第4题,强调书写格式。

三、小结。

通过这节课学到了什么还有什么问题

第四课时

教学内容:

数学书P59及“做一做”,练习十一第5-7题。

教学目标:

1、结合具体图例,根据等式不变的规律会解方程。

2、掌握解方程的格式和写法。

3、进一步提高学生分析、迁移的能力。

教学重难点:

掌握解方程的方法。

教学过程:

一、导入新课

前面,我们学习了等式保持不变的规律,等式在哪些情况下变换仍然保持不变呢等式这些规律在方程中同样适用吗完全可以,因为方程就是等式,今天我们将学习如何利用等式保持不变的规律来解方程。

板书:

解方程。

二、新知学习

(一)教学例1

出示例1,从图中可以获取哪些信息图中表示了什么样的等量关系盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列得到x+3=9

要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢

抽答。

方程两边同时减去一个3,左右两边仍然相等。

板书:

x+3-3=9-3

化简,即得:

x=6

这就是方程的解,谁再来回顾一下我们是怎样解方程的

左右两边同时减去的为什么是3,而不是其它数呢因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。

因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。

追问:

x=6带不带单位呢让学生明白x在这里只代表一个数值,因此不带单位。

要检验x=6是不是正确的答案,还需要验算。

怎么验算呢可抽学生回答。

板书:

方程左边=x+3

=6+3

=9

=方程右边

所以,x=6是方程的解。

小结:

通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。

不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。

(二)教学例2

利用等式不变的规律,我们再来解一个方程。

出示方程:

3x=18,怎样才能求到1个x是多少呢同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。

抽答,在方程两边同时除以3即可。

为什么两边同时除以的是3,而不是其它数呢刚好把左边变成1个x。

让学生打开书59页,把例2中的解题过程补充完整。

展示、订正。

通过,刚才的学习,我们知道了在方程的两边同时减去一个相同的数或同时除以一个不为0的数,左右两边仍然相等。

这是我们解方程常用的两种方法,想不想用它们来试一试呢

(三)反馈练习

1、完成“做一做”的第1题,先找到等量关系,再列方程,解方程。

集体评讲。

2、思考“想一想”:

如果方程两边同时加上或乘上一个数,左右两边还相等吗依据是什么等式保持不变的规律。

试着解方程:

=6x÷9=(强调验算)

(四)课堂作业:

“做一做”第2题。

三、课堂小结。

这节课学习了什么讨论:

什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢

四、作业:

练习十一5—7题。

 

第五课时

教学内容:

数学书P60:

例3,练习十一的第8题。

教学目标:

1、初步学会如何利用方程来解应用题

2、能比较熟练地解方程。

3、进一步提高学生分析数量关系的能力。

教学重难点:

找题中的等量关系,并根据等量关系列出方程。

教学过程:

一、复习导入

解下列方程:

x+=10==x÷4=

学习方程的目的是为了利用方程解决生活中的问题,这节课就来学习如何用方程来解决问题。

板书:

解决问题。

二、新知学习。

1、教学例3.

⑴出示题目。

出示洪泽湖的图片,介绍到:

洪泽湖是我国五大淡水湖之一,位于江苏西部淮河下游,风景优美,物产丰富。

但每当上游的洪水来临时,湖水猛涨,给湖泊周围的人民的生命财产带来了危险。

因此,密切注视水位的变化情况,保证大坝的安全十分重要,如果湖水到了警戒水位的高度,就要引起高度警惕,超出警戒水位越多,大坝的危险就越大。

下面,我们来就来看一则有关大坝水位的新闻。

谁来当主持人,为大家播报一下。

“今天上午8时,洪泽湖蒋坝水位达14.14m,超过警戒水位0.64m.”

我们结合这幅图片来了解一下,课件演示警戒水位、今日水位,及其关系。

同学们想想,“警戒水位是多少米”

⑵分析,解题。

根据刚才所了解的信息,这个问题中有哪几个关键的数量呢警戒水位、今日水位、超出部分。

它们之间有哪些数量关系呢(板)

警戒水位+超出部分=今日水位①

今日水位—警戒水位=超出部分②

今日水位—超出部分=警戒水位③

同学们能解决这个问题吗

学生独立解决问题。

⑶评讲、交流。

(侧重如何用方程来解决本题。

学生展示,可能会是算术方法,也可能列方程。

对于算术方法,给予肯定即可。

学生列出的方程可能有:

①x+=②﹣x=③﹣=x

每一种方法,都需要学生说出是根据什么列出的方程。

如第一种,学生根据的是“警戒水位+超出部分=今日水位”这一数量关系(由于左右相等,

等量关系)所得到的。

解出方程,注意书写格式,并记着检验(口头检验)。

对于第二种,可以肯定学生所列的方程是正确的,但方程不容易解,为什么呢因为x是被减去的,因此,在小学阶段解决问题,列的方程,未知数前最好不是减号。

对于第三种,可让学生让算术解法与之作比较,让其发现,大同小异,因此,在列方程的过程中,通常不会让方程的一边只有一个x。

4小结

在解决问题中,我们是怎样来列方程的

将未知数设为x,再根据题中的等量关系列出方程。

三、练习。

⑴“做一做”中的问题。

从题中知道哪些信息有哪些等量关系

用方程解决问题,四人小组交流方法,评讲,特别提醒:

别忘了检验。

2独立完成练习十一中的第8题。

四、课堂小结

这节课学习了什么(板书课题:

列方程解应用题)还有什么问题

五、板书

列方程解应用题

解:

警戒水位+超出部分=今日水位①x+=

今日水位—警戒水位=超出部分②x+今日水位—超出部分=警戒水位③x=

答:

警戒水位是13.5米。

第六课时

课题:

列方程解乘除计算应用题

教学内容教科书第61页的例题4。

教学目标

1、知识与技能:

使学生理解和掌握列方程解应用题的步骤,能正确列出或的应用题。

2、过程与方法:

让学生自主探究,正确地列出方程解应用题。

3、情感、态度与价值观:

培养学生独立探究的好习惯,并渗透环保教育。

教学过程

一、新授课

教学教科书第61页的例题4。

1、读题,分析题目的已知条件和问题。

2、找出题目的等量关系。

提问:

半小时的接水量表示什么(表示30分钟的滴水量。

每分钟的滴水量×30分钟=半小时的滴水量

3、列方程。

提问:

根据等量关系式,哪些量是已知的,哪些量是未知的

板书:

解题:

假设每分钟的滴水量为xg,

1.8kg=1800g

30x=1800

30x÷30=1800÷30

x=60

答:

每分钟的滴水量为60g。

二、小结

1、提问:

列方程解应用题的特点是什么[用字母表示未知数,根据题目中数量之间的相等关系,列出一个含有未知数的等式(也就是方程),再解出来。

]

2、列方程解应用题的一般步骤是什么

(1)弄清楚题意,找出已知条件和问题。

(2)找出应用题中数量之间的等量关系,并用x表示未知数,列出方程。

(3)解方程。

(4)检验,并写出答案。

三、巩固练习

1、完成教科书第63页的练习十一的第6题。

(1)根据题中的数量关系,列出方程。

(2)求出方程的解。

(3)教师讲评,重点讲解等量关系。

2、完成教科书第63页的练习十一的第7题。

(1)先让学生独立完成。

(2)提问:

你是怎样判断圈出来的字母表示的值得最大的

小结:

当和相同时,一个加数越大,另一个加数就越小,所以第一组中a最大。

当差相同时,一个减数越小,被减数就越大,所以第二组中a最大。

当积相同时,一个因数越大,另一个因数就越小,所以第三组中a最大。

当商相同时,除数越小,被除数就越大,所以第四组中a最大。

四、作业:

教科书第64页的练习十一的第8-11题。

第七课时

教学内容:

教科书第65页的例题1

教学目标:

1、使学生进一步理解列方程解答应用题的思路和步骤,学会用列方程的方法解答数量关系稍复杂的两步计算的应用题,即“已知一个数的几倍多(或少)几的数量是多少,求这个数”。

2、使学生进一步体会到列方程解答应用题的优越性。

教学重点:

解方程的步骤和方法。

教学难点:

用方程解决问题的思路和数量关系。

教学过程:

一、复习铺垫

1、3的6倍是多少

2、比3的6倍多4的数

3、比3的6倍少4的数

4、x个5是125,求x

5、公鸡x只,母鸡30只,比公鸡只数的2倍少6只。

用方程和线段图怎样表示它们的数量关系

6、引入新课。

这节课我们要学习的列方程解应用题的内容。

(板书课题)

二、教学新课

1、出示例1。

2、审题,理解题意。

识别哪些信息是解决“求黑色皮块数”

学生讨论分析白色皮鞋数与黑色皮鞋数之间的关系。

可以怎样用线段图表示数量关系

(画出线段图)

3、提问:

哪个数量是未知的怎样设未知数X

4、问:

能列方程解答吗请大家自己列方程解答,然后小组相互交流,讨论方程是怎样列出来的,并且说说检验的过程。

指名学生口答,老师板书解题过程,结合提问是怎样想的。

5、让每个学生想一想,这道题还可以怎样列方程(让学生列在书上)

可以让学生根据题意说出这两个方程所表示的数量间相等关系,再说一说哪一种数量间的相等关系容易思考,便于列出方程。

引导总结:

列方程解决问题的步骤:

⑴弄请题意找出未知数用x表示。

⑵分析找出数量之间的相等关系,列方程。

⑶解方程

⑷检验、写答案。

三、巩固练习

1、做“练习十二”第1、2题。

2、新学案。

四、课堂总结

说说这节课的收获存在的问题。

作业:

练习十二第3-5题。

第八课时

教学内容:

教科书69页例2

教学目标:

1、是学生感受数学与现实生活的联系。

2、初步学会列方程解决一些简单的实际问题。

3、培养学生用多种方法解决问题的能力。

教学过程:

一、复习

1、复习数量关系:

单价×数量=总价

速度×时间=路程

工作效率×工作时间=工作总量

2、已知苹果的单价和数量,怎样求总价

已知梨子的单价和数量,怎样求总价

已知苹果的总价和梨子的总价,怎样求两种苹果总价。

二、新授课

教学教科书69页的例2。

1、请同学们观察69页上面的一幅图

学生:

通过图我们观察到

阿姨到水果店去买了苹果和梨各2千克,共元,每千克梨元,每千克苹果多少元

说一说这一道题的已知条件和问题分别是什么

2、分析本题的数量关系。

苹果的总价+梨的总价=总价

种水果的单价总和×2=总价

3、列方程并解方程。

⑴苹果的总价+梨的总价=总价

解:

设苹果每千克x元,

2x+×2=

2x+=

2x+-=-

2x=

2x÷2=÷2

x=

答:

苹果每千克元。

⑵两种水果的单价总和×2=总价

解:

设苹果每千克x元,

(x+)×2=

x+=÷2

x+=

x=–

x=

验算:

把x=代入原方程

左边=+×2=右边=

因为左边=右边

所以x=三原方程的解。

答:

苹果每千克元。

三、巩固练习:

71页2题

通过观察图例,使学生明白解题的思路和知道怎样着手解这个题。

学生:

解一:

儿童票价+成人票价=总价解二:

(成人单价+儿童单价)×2=总价

解设儿童票价每张x元

2x+4×2=11(x+4)×2=11

2x+8=11x+4=11÷2

2x=11–8x+4=

2x=3x=-4

x=x=

答:

小结:

今天我们学习了用方程解决生活中的实际问题。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试认证 > 从业资格考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1