镇江市初中数学命题与证明的真题汇编及答案解析.docx

上传人:b****7 文档编号:11092159 上传时间:2023-02-25 格式:DOCX 页数:17 大小:33.41KB
下载 相关 举报
镇江市初中数学命题与证明的真题汇编及答案解析.docx_第1页
第1页 / 共17页
镇江市初中数学命题与证明的真题汇编及答案解析.docx_第2页
第2页 / 共17页
镇江市初中数学命题与证明的真题汇编及答案解析.docx_第3页
第3页 / 共17页
镇江市初中数学命题与证明的真题汇编及答案解析.docx_第4页
第4页 / 共17页
镇江市初中数学命题与证明的真题汇编及答案解析.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

镇江市初中数学命题与证明的真题汇编及答案解析.docx

《镇江市初中数学命题与证明的真题汇编及答案解析.docx》由会员分享,可在线阅读,更多相关《镇江市初中数学命题与证明的真题汇编及答案解析.docx(17页珍藏版)》请在冰豆网上搜索。

镇江市初中数学命题与证明的真题汇编及答案解析.docx

镇江市初中数学命题与证明的真题汇编及答案解析

镇江市初中数学命题与证明的真题汇编及答案解析

一、选择题

1.下列命题中正确的有()个

①平分弦的直径垂直于弦;②经过半径的外端且与这条半径垂直的直线是圆的切线;③在同圆或等圆中,圆周角等于圆心角的一半;④平面内三点确定一个圆;⑤三角形的外心到三角形的各个顶点的距离相等.

A.1B.2C.3D.4

【答案】B

【解析】

【分析】

根据垂径定理的推论对①进行判断;根据切线的判定定理对②进行判断;根据圆周角定理对③进行判断;根据确定圆的条件对④进行判断;根据三角形外心的性质对⑤进行判断.

【详解】

①平分弦(非直径)的直径垂直于弦,错误;

②经过半径的外端且与这条半径垂直的直线是圆的切线,正确;

③在同圆或等圆中,同弧所对的圆周角等于圆心角的一半,错误;

④平面内不共线的三点确定一个圆,错误;

⑤三角形的外心到三角形的各个顶点的距离相等,正确;

故正确的命题有2个

故答案为:

B.

【点睛】

本题考查了判断命题真假的问题,掌握垂径定理的推论、切线的判定定理、圆周角定理、确定圆的条件、三角形外心的性质是解题的关键.

2.下列命题中逆命题是假命题的是()

A.如果两个三角形的三条边都对应相等,那么这两个三角形全等

B.如果a2=9,那么a=3

C.对顶角相等

D.线段垂直平分线上的任意一点到这条线段两个端点的距离相等

【答案】C

【解析】

【分析】

首先写出各命题的逆命题(将每个命题的题设与结论调换),然后再证明各命题的正误.因为相等的角不只是对顶角,所以此答案是假命题,继而得到正确答案.

【详解】

解:

A、逆命题为:

如果两个三角形全等,那么这两个三角形的三条边都对应相等.是真命题;

B、逆命题为:

如果a=3,那么a2=9.是真命题;

C、逆命题为:

相等的角是对顶角.是假命题;

D、逆命题为:

到线段两个端点的距离相等的点在这条线段垂直平分线上.是真命题.

故选C.

【点睛】

此题考查了命题与逆命题的关系.解题的关键是找到各命题的逆命题,再证明正误即可.

3.下列命题是真命题的是(  )

A.内错角相等

B.平面内,过一点有且只有一条直线与已知直线垂直

C.相等的角是对顶角

D.过一点有且只有一条直线与已知直线平行

【答案】B

【解析】

【分析】

命题的“真”“假”是就命题的内容而言.任何一个命题非真即假,正确的命题为真命题,错误的命题为假命题.

【详解】

A、内错角相等,是假命题,故此选项不合题意;

B、平面内,过一点有且只有一条直线与已知直线垂直,是真命题,故此选项符合题意;

C、相等的角是对顶角,是假命题,故此选项不合题意;

D、过一点有且只有一条直线与已知直线平行,是假命题,故此选项不合题意;

故选:

B.

【点睛】

此题主要考查了命题与定理,关键是掌握要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.

4.下列结论中,不正确的是()

A.两点确定一条直线

B.两点之间,直线最短

C.等角的余角相等

D.等角的补角相等

【答案】B

【解析】

【分析】

根据直线线段的性质和余角、补角的定义逐项分析可得出正确选项.

【详解】

A.两点确定一条直线,正确;

B.两点之间,线段最短,所以B选项错误;

C.等角的余角相等,正确;

D.等角的补角相等,正确.

故选B

考点:

定理

5.现给出下列四个命题:

①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;

③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于60°.

其中不正确的命题的个数是(  )

A.1个B.2个C.3个D.4个

【答案】C

【解析】①根据等边三角形的性质知,等边三角形是轴对称图形,不是中心对称图形,错误;

②由相似三角形的性质知相似三角形的面积比等于它们的相似比的平方,错误;

③根据菱形的面积公式,错误;

④根据三角形内角和定理可知,三角形的三个内角中至少有一内角不小于60°,正确.

综合以上分析,不正确的命题包括①②③.

故选C.

6.下列命题的逆命题不成立的是()

A.两直线平行,同旁内角互补B.如果两个实数相等,那么它们的平方相等

C.平行四边形的对角线互相平分D.全等三角形的对应边相等

【答案】B

【解析】

【分析】

把一个命题的条件和结论互换就得到它的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.

【详解】

选项A,两直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,正确,成立;

选项B,如果两个实数相等,那么它们的平方相等的逆命题是平方相等的两个数相等,错误,不成立,如(﹣3)2=32,但﹣3≠3;

选项C,平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,正确,成立;

选项D,全等三角形的对应边相等的逆命题是对应边相等的三角形全等,正确,成立;

故选B.

【点睛】

本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.

7.下列说法中,正确的是()

A.图形的平移是指把图形沿水平方向移动.

B.平移前后图形的形状和大小都没有发生改变.

C.“相等的角是对顶角”是一个真命题

D.“直角都相等”是一个假命题

【答案】B

【解析】

图形的平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移,平移前后图形的形状和大小都没有发生改变.而相等的角不一定是对顶角,C是一个假命题,直角都相等是真命题.故选B

8.下列命题中,是假命题的是(  )

A.若a>b,则-a<-b

B.若a>b,则a+3>b+3

C.若a>b,则

D.若a>b,则a2>b2

【答案】D

【解析】

【分析】

利用不等式的性质分别判断后即可确定正确的选项.

【详解】

A、若a>b,则-a<-b,正确,是真命题;

B、若a>b,则a+3>b+3,正确,是真命题;

C、若a>b,则

,正确,是真命题;

D、若a>b,则a2>b2,错误,是假命题;

故选:

D.

【点睛】

此题考查命题与定理的知识,解题的关键是了解不等式的性质,难度不大.

9.下列命题是真命题的是()

A.若两个数的平方相等,则这两个数相等B.同位角相等

C.同一平面内,垂直于同一直线的两条直线平行D.相等的角是对顶角

【答案】C

【解析】

【分析】

根据平方的意义,同位角的概念,平行线的判定,对顶角的概念逐一进行判断即可得.

【详解】

A.若两个数的平方相等,则这两个数不一定相等,如22=(-2)2,但2≠-2,故A选项错误;

B.只有两直线平行的情况下,才有同位角相等,故B选项错误;

C.同一平面内,垂直于同一直线的两条直线平行,真命题,符合题意;

D.相等的角不一定是对顶角,如图,∠1=∠2,但这两个角不符合对顶角的概念,故D选项错误,

故选C.

【点睛】

本题考查了命题真假的判定,涉及了乘方、同位角、对顶角、平行线的判定等知识,熟练掌握相关知识是解题的关键.

10.下列说法正确的是(  )

A.若a>b,则a2>b2

B.若三条线段的长a、b、c满足a+b>c,则以a、b、c为边一定能组成三角形

C.两直线平行,同旁内角相等

D.三角形的外角和为360°

【答案】D

【解析】

【分析】

利用特例对A进行分析,利用三角形三边关系、平行线的性质、三角形外角的性质分别对B、C、D进行分析判断.

【详解】

A、若a>b,则不一定有a2>b2,比如a=0,b=﹣1,故本选项错误;

B、若三条线段的长a、b、c满足a+b>c,则以a、b、c为边不一定能组成三角形,故本选项错误;

C、两直线平行,同旁内角互补,故本选项错误;

D、三角形的外角和为360°,故本选项正确;

故选:

D

【点睛】

本题考查真假命题的判断,解题的关键是根据相关知识对命题进行分析判断.

11.在下列各原命题中,其逆命题为假命题的是()

A.直角三角形的两个锐角互余

B.直角三角形两条直角边的平方和等于斜边的平方

C.等腰三角形两个底角相等

D.同角的余角相等

【答案】D

【解析】

【分析】

首先写出各个命题的逆命题,然后进行判断即可.

【详解】

A、逆命题是:

两个锐角互余的三角形是直角三角形,是真命题,故此选项不符合题意;

B、逆命题是:

如果一个三角形有两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形,是真命题,故此选项不符合题意;

C、逆命题是:

有两个角相等的三角形是等腰三角形,是真命题,故此选项不符合题意;

D、逆命题是:

如果两个角相等,那么它们是同一个角的余角,是假命题,故此选项符合题意.

故选:

D.

【点睛】

本题考查了命题与定理:

判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.

12.下列命题中,真命题的是(  )

A.两条直线被第三条直线,同位角相等

B.若a⊥b,b⊥c,则a⊥c

C.点p(x,y),若y=0,则点P在x轴上

D.若

=a,则a=﹣l

【答案】C

【解析】

【分析】

根据平行线的性质对A进行判断;根据平行线的判定方法对B进行判断;根据x轴上点的坐标特征对C进行判断;根据二次根式的性质对D进行判断.

【详解】

A、两条平行直线被第三条直线,同位角相等,所以A选项为假命题;

B、在同一平面内,若a⊥b,b⊥c,则a∥c,所以B选项为假命题;

C、点p(x,y),若y=0,则点P在x轴上,所以C选项为真命题;

D、若

=a,则a=0或a=1,所以D选项为假命题.

故选:

C.

【点睛】

本题考查了命题与定理:

命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.

13.用反证法证明命题:

“在三角形中,至多有一个内角是直角”,正确的假设是()

A.在三角形中,至少有一个内角是直角B.在三角形中,至少有两个内角是直角

C.在三角形中,没有一个内角是直角D.在三角形中,至多有两个内角是直角

【答案】B

【解析】

【分析】

反证法即假设结论的反面成立,“最多有一个”的反面为“至少有两个”.

【详解】

解:

∵“最多有一个”的反面是“至少有两个”,反证即假设原命题的否命题正确,

∴应假设:

在三角形中,至少有两个内角是直角.

故选:

B.

【点睛】

此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,不需要一一否定,只需否定其一即可.

14.39.下列命题中,是假命题的是()

A.同旁内角互补

B.对顶角相等

C.直角的补角仍然是直角

D.两点之间,线段最短

【答案】A

【解析】同旁内角不一定互补,同旁内角互补的条件是两直线平行,故选A.

15.下列命题中,是真命题的是()

A.同位角相等B.若两直线被第三条直线所截,同旁内角互补

C.同旁内角相等,两直线平行D.平行于同一直线的两直线互相平行

【答案】D

【解析】

【分析】

根据平行线的判定、平行线的性质判断即可.

【详解】

A、两直线平行,同位角相等,是假命题;

B、若两条平行线被第三条直线所截,同旁内角互补,是假命题;

C、同旁内角互补,两直线平行,是假命题;

D、平行于同一直线的两条直线互相平行,是真命题;

故选:

D.

【点睛】

此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.

16.已知下列命题:

①若a>b,则ac>bc;

②若a=1,则

=a;

③内错角相等;

④90°的圆周角所对的弦是直径.

其中原命题与逆命题均为真命题的个数是(  )

A.1个B.2个C.3个D.4个

【答案】A

【解析】

【分析】

先对原命题进行判断,再判断出逆命题的真假即可.

【详解】

解:

①若a>b,则ac>bc是假命题,逆命题是假命题;

②若a=1,则

=a是真命题,逆命题是假命题;

③内错角相等是假命题,逆命题是假命题;

④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;

其中原命题与逆命题均为真命题的个数是1个;

故选A.

点评:

主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.

17.下列命题的逆命题不正确的是()

A.相等的角是对顶角B.两直线平行,同旁内角互补

C.矩形的对角线相等D.平行四边形的对角线互相平分

【答案】C

【解析】

【分析】

首先写出各个命题的逆命题,然后进行判断即可.

【详解】

A、逆命题是:

对顶角相等.正确;

B、逆命题是:

同旁内角互补,两直线平行,正确;

C、逆命题是:

对角线相等的四边形是矩形,错误;

D、逆命题是:

对角线互相平分的四边形是平行四边形,正确.

故选:

C.

【点睛】

本题主要考查了写一个命题的逆命题的方法,首先要分清命题的条件与结论.

18.下列说法正确的是(  )

①函数

中自变量

的取值范围是

②若等腰三角形的两边长分别为3和7,则第三边长是3或7.

③一个正六边形的内角和是其外角和的2倍.

④同旁内角互补是真命题.

⑤关于

的一元二次方程

有两个不相等的实数根.

A.①②③B.①④⑤C.②④D.③⑤

【答案】D

【解析】

【分析】

根据二次根式定义,等腰三角形性质,正多边形内角和外角关系,平行线性质,根判别式定义进行分析即可.

【详解】

①函数

中自变量

的取值范围是

,故错误.

②若等腰三角形的两边长分别为3和7,则第三边长是7,故错误.

③一个正六边形的内角和是其外角和的2倍,正确.

④两直线平行,同旁内角互补是真命题,故错误.

⑤关于

的一元二次方程

有两个不相等的实数根,正确,

故选D.

【点睛】

此类题的知识综合性非常强.要求对每一个知识点都要非常熟悉.注意:

二次根式有意义的条件是被开方数是非负数,分式有意义的条件是分母不等于0,弄清等腰三角形的三线合一指的是哪三条线段,熟悉多边形的内角和公式和外角和公式,熟练配方法的步骤;理解正多边形内角和外角关系;熟记根判别式.

19.下列命题中哪一个是假命题(  )

A.8的立方根是2

B.在函数y=3x的图象中,y随x增大而增大

C.菱形的对角线相等且平分

D.在同圆中,相等的圆心角所对的弧相等

【答案】C

【解析】

【分析】

利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.

【详解】

A、8的立方根是2,正确,是真命题;

B、在函数

的图象中,y随x增大而增大,正确,是真命题;

C、菱形的对角线垂直且平分,故错误,是假命题;

D、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,

故选C.

【点睛】

考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.

20.下列命题:

①直角三角形的两个锐角互余;②同旁内角互补;③如果直线

,直线

,那么

.其中真命题的序号是()

A.①②B.①③C.②③D.①②③

【答案】B

【解析】

【分析】

利用直角三角形的性质、平行线的性质等知识分别判断后即可确定正确的选项.

【详解】

解:

①直角三角形的两个锐角互余,正确,是真命题;

②两直线平行,同旁内角互补,故错误,是假命题;

③如果直线

,直线

,那么

,正确,是真命题;

故选:

B.

【点睛】

本题主要考查了命题与定理,掌握命题与定理是解题的关键.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 外语学习 > 法语学习

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1