LD32t电动单梁起重机计算书.docx

上传人:b****8 文档编号:11015112 上传时间:2023-02-24 格式:DOCX 页数:36 大小:434.30KB
下载 相关 举报
LD32t电动单梁起重机计算书.docx_第1页
第1页 / 共36页
LD32t电动单梁起重机计算书.docx_第2页
第2页 / 共36页
LD32t电动单梁起重机计算书.docx_第3页
第3页 / 共36页
LD32t电动单梁起重机计算书.docx_第4页
第4页 / 共36页
LD32t电动单梁起重机计算书.docx_第5页
第5页 / 共36页
点击查看更多>>
下载资源
资源描述

LD32t电动单梁起重机计算书.docx

《LD32t电动单梁起重机计算书.docx》由会员分享,可在线阅读,更多相关《LD32t电动单梁起重机计算书.docx(36页珍藏版)》请在冰豆网上搜索。

LD32t电动单梁起重机计算书.docx

LD32t电动单梁起重机计算书

LD132—16.4A3电动单梁起重机

校核计算书

编写:

日期:

审核:

日期:

批准:

日期:

XXXXXX起重机械有限公司

第一节设备概述、型式及主要技术参数3

一、设备概述、型式及结构特点3

二、主要技术参数4

第二节主梁计算5

一、主梁断面几何特性5

二、主梁强度的计算8

三、刚度计算13

四、稳定性计算16

第三节端梁计算17

一、轮距的确定17

二、端梁中央断面几何特性18

三、起重机最大轮压20

四、最大歪斜侧向力23

五、端梁中央断面合成应力24

六、车轮轮轴对端梁腹板的挤压应力σ挤25

第四节主、端梁连接计算26

一、主、端梁连接形式及受力分析26

二、螺栓拉力的计算27

第五节、运行机构计算31

一、运行机构电动机及减速机的选择32

第一节设备概述、型式及主要技术参数

一、设备概述、型式及结构特点

LD1型电动单梁起重机是按照GB/T3811-2008、JB/T1306-2008及

TSGQ0002-200《8起重机械安全技术监察规程---桥式起重机》的有关条款研制出来的产品,突出特点为电动葫芦运行轨道采用异型工字钢,使起重机主梁结构更趋合理,是单梁起重机发展的一个方向

其外形简图见图1.

 

图1LD1型电动单梁起重机简图

二、主要技术参数

起重量Gn=32t;跨度L=16.4m;大车运行速度V运=20m/min;

工作制度A3;小车采用32吨电动葫芦;葫芦最大轮压Pmax=3140kg;

葫芦起升高度=9m;葫芦运行速度V小车=20m/min;操纵型式:

地面手电门。

32吨电动单梁起重机基本技术参数

序号

名称

型号/单位

参数值

备注

1

起重量

32

2

操纵形式

地操

3

大车运行

运行速度V运

米/分

20

摆线针轮减速机

BLY27-25(水平安装)

i=25

电机法兰与减速机法

兰相配

4

电机型号

YSE100L2-4

软启动

5

功率N

千瓦

2×3kw

宁波新大通软启动

6

转速n

转/分

1200

7

电动葫芦

电动葫芦型号

HC32-9M3

32t

8

起升速度V起

米/分

3.5

9

起升高度H

9

10

运行速度V运

米/分

20

11

电机型号

ZDY121-4

12

功率N

千瓦

4×0.8

13

转速n

转/分

1200

14

小车最大轮压

t

~3.14

15

工作级别

M3

16

重量

kg

2500

17

整机工作级别

A3

18

电源

380V50HZ

19

车轮踏面直径

mm

460

小齿轮与齿圈

17/59(齿数)i=3.47

20

主动轮数

2

21

轮槽宽

mm

70

22

跨度L

m

16.4

23

起重机最大轮压

t

21

起重机总重

kg

9860

含电动葫芦

第二节主梁计算

、主梁断面几何特性

主梁及主要参数如下图3、图4

图3

 

 

4

x=10462.53cm4,

主梁断面尺寸及截面几何特性CAD计算机自动计算结果,如图5

采用定轧的异型工字钢I30#(特种型号),尺寸为;h=300mm,b=128mm,d=11mm,

2

t1=20mm,t2=14.68mm,Fj=73.66cm2,g1=57.82kg/m,I

4

Iy=529.84cm4

面积2

周长

惯性矩主力矩与质心的方向

沿

沿

图5

 

通过AoTuCAD2000以上版本1:

1画出主梁截面图,然后面域,再使用面域质量特性得出结论。

由上图可得:

1.主梁横截面面积;

F=319.11cm2

2.梁断面水平形心轴X`-X`位置

Z=76.34(cm)

3.主梁断面惯性矩;

jX=875218.8cm4

jy=132319.02cm4

二、主梁强度的计算

根据这种结构形式起重机的特点,不考虑水平惯性力对主梁造成的应力,及其水平平面内载荷对主梁的扭转作用也可忽略不计。

主梁强度的计算按第Ⅱ类载荷进行组合。

对活动载荷,由于小车轮距很小,可以近似按集中载荷计算。

验算主梁跨中断面弯曲正应力和跨端断面剪应力。

跨中断面弯曲正应力包括梁的整体弯曲应力和由小车轮压在工字钢下翼缘引起的局部弯曲应力两部分,合成后进行强度校核。

本起重机用于一般用途,所以金属结构采用许用应力设计法设计计算,载荷组合按B类算,安全系数n=1.34,故:

许用应力许s23501754kg/cm2

许1.341.34

梁的整体弯曲在垂直平面内按简支计算。

在水平平面内按刚接的框架计

算。

见图6

图6

1.垂直载荷在下翼缘引起的弯曲正应力

PS4.G室.c4.q.S2

j428

式中;P2.Gn4.G葫1.17320001.12250040240kg其中Gn—额定起重量Gn=32000kg

G葫—电动葫芦自重G葫=2500kg

2--动载系数按GB/T3811-2008计算得

22min

2q1.150.510.0581.17(查GB/T3811-2008标准P19页)

4--冲击系数按GB/T3811-2008计算得

4=1.10.058yh1.10.0580.3311.12

(查GB/T3811-2008标准P21页)

S—跨度,S=16.4m=1640cm

Z—主梁下表面距断面形心轴X-X的距离Z=76.34cm

jx--主梁跨中断面对轴X-X的惯性矩;jx=875218.8cm4

c--操纵室重心支点的距离c=0cm(地操无此值)

G室--操纵室重量G室=0kg(地操无此值)

q—桥架单位长度重量(均布载荷)(kg/m)

q=1000·F·γ+q'式中F--主梁断面的总面积;F=319.11cm2=0.031911m2γ—材料比重γ=7.85t/m3

q'--主梁隔板、纵向加劲肋重量所产生的均布载荷,查图纸得

q'=52.44kg/m

q=1000×0.031911×7.85+52.44=302.94kg/m=3.03kg/cm

PSKII.G室.cKII.q.S2

kg/cmj428

76.344024016401.1201.123.0316402875218.8428

2

0.0000872176393281538kg/cm2

∵1538<1754kg/cm2∴符合要求

2.主梁工字钢下翼缘局部弯曲计算见图7

图7

(1)计算轮压作用点位置i及系数ξ

i=a+c-e

式中;i--轮压作用点与腹板表面的距离(cm)

e=0.164R对普通工字钢,翼缘表面斜度为1/6

R--电动葫芦走轮踏面曲率半径;可从电动葫芦图纸查得;R=17.2cme=0.164×17.2=2.82

∴i=5.85+0.4-2.82=3.43

=i/a=3.43÷5.85=0.58

图8

(2)工字钢下翼缘局部弯曲应力计算;见图8

图8中1点横向(xy平面内)局部弯曲应力σ1由下式计算

1k1P轮

1t2

0

0.91.8031402

2496.8kg/cm2

3.2

∵1点受拉,

2

故1496.8kg/cm2

式中;a1--翼缘结构形式系数;贴补强板时取a1=0.9

K1--局部弯曲系数;查图9得K1=1.8

P轮—电动葫芦轮压P轮=3140kg

t0=t+δ;t--工字钢翼缘平均厚度,t=2.0cmδ--补强板厚度δ=1.2cm

t02=(2+1.2)2=10.24cm2

图9局部弯曲曲线图

图8中1点纵向(yz平面内)局部弯曲应力σ2由下式计算

式中;a1--翼缘结构形式系数;贴补强板时取a1=0.9K2--局部弯曲系数;查图9得K2=0.6P轮—电动葫芦轮压P轮=3140kgt0=t+δ;t--工字钢翼缘平均厚度,t=2.0cmδ--补强板厚度δ=1.2cm

222

t02=(2+1.2)2=10.24cm2

图8中2'点纵向(yz平面内)局部弯曲应力σ3由下式计算

式中;K3-局部弯曲系数;查图9得K3=0.4;

a2--翼缘结构形式系数;贴补强板时取a2=1.5

3.主梁跨中断面当量应力计算

图8中1点当量应力σ当1由下式计算

当112

(2)2(12)496.82(165.51538)2496.8(165.51538)1517kg/cm2

22

∵1517kg/cm2<σ许=<1754kg/cm2∴符合要求

图8中2'点当量应力σ当2'由下式计算

当2'=σx+σ3

=1538+183.9

=1721.9kg/cm2<σ许=1754kg/cm2∴符合要求

三、刚度计算

LD1型电动单梁桥式起重机应对主梁的垂直静刚度和水平静刚度进行验

算,并必须符合要求。

而对动刚度一般可不验算,只有在使用上提出特殊要求时,如高速运行或精确安装的起重机,尚需验算动刚度。

1.垂直静刚度计算

Ps3s

f[f]

48EJx1000

式中;f--主梁垂直静挠度(cm)

P--静载荷P=Gn+G葫=32000+2500=34500(kg)

S—跨度S=1640cm

E—材料弹性横量,Q235钢的E=2.1×106kg/cm2

jx--主梁跨中断面垂直惯性矩(cm4)jX=875218.8cm4

[f]--许用垂直静挠度(cm);按GB/T3811-2008中等定位精度特性起

重机取[f]=S/750=1640/750=2.19cm

 

∵1.72cm≤2.19cm∴符合要求

2.

水平静刚度计算

式中;f水--主梁水平静挠度(cm)

P′--水平惯性力(kg)

P′=P/20=34500/20=1725kg

y--主梁跨中断面水平惯性矩(cm4)jy=132319.02cm4

[f水]---许用水平静挠度(cm);取[f水]=S/2000=1640/2000=0.82cm

f水=P`S3

48Ejy

3

172516403

60.57cm

482.1106132319.02

∵0.57cm<0.82cm∴符合要求

g—重力加速度g=9.8米/秒2

a平—起重机运行的平均加速度,当驱动轮为,总轮数的1/2

时,一般取a平=0.5米/秒左右

3.动刚度计算

在垂直方向上的自振周期

式中:

T—自振周期(秒)

11M=(0.5qsG葫)

g

M—起重机和葫芦的换算质量(单位:

公斤.秒2/厘米)

2

0.53.0316402500)5.09kgs2/cm980

g—重力加速度(g=9.8米/秒2=980cm/秒2)

q—主梁均布载荷(kg/m),q=3.03kg/cm

K—桥梁在垂直平面内的刚度,

K96E3jx962.11063875218.839994kg/cmS316403

 

E—弹性模量E=2.1×106(kg/cm2)

jx—主梁跨中断面垂直惯性矩(cm4)jX=875218.8cm4

S—跨度S=1640cm

T2M23.1415926

K

∵0.071秒≤[T]=0.3秒

359.909940.071秒

∴符合要求

[T]

0.3秒

 

四、稳定性计算

稳定性计算包括两部分,即主梁“整体稳定性计算和主梁腹板受压翼缘板的局部稳定性计算。

1、起重机整体稳定性

当主梁具有足够的水平刚度时,就能明显的阻止主梁断面的扭转。

当主梁水

S

平挠度f水20S00时,即水平刚度得以保证,一般可以不计算主梁的整体稳定性。

本产品均能保证水平刚度,所以以下将不再计算主梁的整体稳定性。

2、主梁腹板的局部稳定性

一般当主梁腹板受拉区直接作用有集中轮压时可以不考虑集中轮压对腹板稳定性的影响。

本产品正符合这一特征,即葫芦小车的轮压是作用在主梁的受拉区,所以以下也将对主梁腹板局部稳定性不予以计算。

3、受压翼缘板局部稳定性

本产品主梁是由钢板拼接成的Π型槽通过每隔一间距的横向加劲板及斜侧板同异型工字钢组焊成一体,Π形槽的两直角都将大大减小翼缘板(上盖板)的局部不稳定性,有关这方面的计算,此处暂不计算。

第三节端梁计算

本产品的端梁结构采用钢板拼焊成Π型槽,再组焊成箱形端梁。

见图10

端梁通过车轮将主梁支承在轨道上。

端梁同车轮的连接形式是将车轮通过心轴安装在端梁腹板上。

端梁应验算中央断面(支承主梁处断面)的弯曲应力和支承在车轮处断面

一、轮距的确定

K=(1/7~1/5)S=(1/7~1/5)·16.4=2.34-3.28m取K=2.5m.

端梁中央断面几何特性

根据系列产品设计资料,初步给出端梁断面尺寸,断面尺寸及截面几何特

性CAD计算机自动计算结果如图11。

图11

端梁中央断面尺寸及截面特性CAD计算机自动计算结果(单位:

mm)通过AoTuCAD2000以上版本1:

1画出主梁截面图,然后面域,再使用面域质量特性得出结论。

由上图可得:

1.截面总面积

2

F=240.66cm2

2.形心位置

Y=31.05cm

X=3.65cm

3.截面惯性矩

4

JX=90726.32cm4

Jy=38891.71cm4

4.断面模量

Wx

JX

Y

90726.32

31.05

2921.9cm3

Wy

Jy38891.71

X1821.65

3

1796.4cm3

 

三、起重机最大轮压

此冶金单梁起重机是由四个车轮支承的,起重机的载荷通过这些支承点传到轨道上

1.起重机支承反力作用见图12

 

图12

2.起重机最大轮压的计算带额定载荷小车分别移动到左、右两端极限位置时,按第II类载荷计算最大轮压。

(1)地面操纵,载荷移到左端时,各车轮轮压:

NA

2Gn

4G葫

1

2L1

4qs

4G端

4G轮主

4G驱

4

S

4

2

NB

2Gn

4G葫

1

2L1

4qs

4G端

4G轮主

4G驱

4

S

4

2

Nc

2Gn

4G葫

1

2L1

4qs

4G端

4G轮从

4

S

4

2

ND

2Gn

4G葫

1

2L1

4qs

4G端

4G轮从

4

S

4

2

 

式中:

2--动载系数按GB/T3811-2008计算得2=1.17

4--冲击系数按GB/T3811-2008计算得4=1.12

G端—端梁重G端=511(kg)

G轮主—主动车轮装置重(kg)

G驱—驱动装置重(kg),近似以为G驱完全由主动车轮承受S—跨度(cm)。

L1—跨中至载荷的极限位置之距离(cm)。

式中;Gn--额定起重量.Gn=32000Kg

G葫---电葫芦重量.G葫=2500Kg

G端—端梁重量.查图纸得G端=511Kg

G轮主—主动车轮装置重量.查图纸得G轮主=293KgG轮从--从动车轮装置重量查图纸得G轮从=227KgG驱---驱动装置重量查样本得G驱=189Kg

G操--操纵室重量G操=0Kg

q---主梁单位长度重量q=3.03Kg/cm

L跨度L=1640cm

K轮距K=250cm

查图纸得L1=655cm

L1——主梁重心到小车左极限位置距离

查图纸得L2=595cm

1.17

32000

4

1.12

2500

1

2655

1.123.031640

1.12511

1640

4

2

1.17

32000

1.12

2500

1

2655

1.12

3.03

1640

1.12

511

4

1640

4

2

1.17

32000

1.12

2500

1

2655

1.12

3.03

1640

1.12

511

4

1640

4

2

1.17

32000

1.12

2500

1

2655

1.12

3.03

1640

1.12

511

4

1640

4

2

主梁重心到小车右极限位置距离

N

1.12

293

A

N

1.12

293

B

N

1.12227

C

N

1.12227

D

1.1218920313kg

1.121894242kg

3956.4kg

20028kg

(2)地面操纵,载荷移到右端时,各车轮轮压:

 

NA

NB

Nc

ND

2Gn

4G葫

1

2L2

4q

s

4G端

4

S

4

2

2Gn

4G葫

1

2L2

4q

s

4G端

4

1

S

4

2

2Gn

4G葫

1

2L2

4q

s

4G端

4

1

S

4

2

2Gn

4G葫

1

2L2

4q

s

4G端

4

1

S

4

2

4

4G轮主

4G轮从

4G轮从

4G驱

4G驱

NA

NB

NC

1.17

32000

4

1.12

2500

1

2595

1.123.031640

1.12511

1640

4

2

1.17

32000

1.12

2500

1

2595

1.12

3.03

1640

1.12

511

4

1640

4

2

1.17

32000

1.12

2500

1

2595

1.12

3.03

1640

1.12

511

4

1640

4

2

1.17

32000

1.12

2500

1

2595

1.12

3.03

1640

1.12

511

4

1640

4

2

1.12

1.12

1.12

1.12

ND

2931.12189

293

227

227

1.12189

276013912865404978kg

17359139128654019577kg

17359139128625419290kg

276013912862544691kg

地操电动单梁起重机,它的最大轮压是在当载荷移动到左端极限位置时

的驱动轮A上,即NA为最大轮压。

Nmax=20313Kg

 

四、最大歪斜侧向力

起重机运行时,由于各种原因会出现跑偏歪斜现象,此时车轮轮缘与轨道

侧面的接触并产生与运动方向垂直的侧向力S1。

如图13

 

图13

由图13知,当载荷移动到左端极限位置时,地面操纵时,最大轮压

NA=20313Kg,并认为NA=ND,这时最大侧向力SD=λ·N

式中N--最大轮压N=20313Kg

λ—侧压系数。

对于轮距K同跨度L比例关系在K/L=1/5—1/7之间时,可取λ≈0.1。

SD=0.1×20313≈2031Kg当载荷移动到右端极限位置时,地面操纵时,最大轮压为NB=19577Kg并认为NC=NB,这时最大侧向力SB=λ·NB=0.1×19577≈1958Kg

 

 

II类算,强

五、端梁中央断面合成应力

由于是地面操纵,所以最大侧向力考虑当载荷移动到左端极限位置时,最

大侧向力在轮A上,即SA=SD=2031Kg

NkSAk

2WX2Wy

式中K---轮距K=250cm

SA--最大侧向力SA=2031Kg

N--最大轮压N=20313Kg

WX,,WY端面模数WX=2921.9cm3WY=1796.4cm3

[σ]许用应力,本起重机金属结构许用应力载荷组合按

度安全系数n=1.34,故:

六、车轮轮轴对端梁腹板的挤压应力σ挤

图10的B-B截面如图14

图14

车轮轴对端梁支承腹板的挤压应力为σ挤

Po2(kg)

[σ挤]——许用挤压应力(kg/cm2),

本产品对Q235材料的[σ挤]取[σ挤]=1150kg/cm

式中N---最大轮压N=20313Kg

δ0--端梁支承板厚度δ0=2cmd0---端梁腹板轴孔直径d0=14cm

[σ挤]—许用挤压应力

挤]=1150Kg/cm

20313

2142

2

362.7kg/cm2<[

挤]=1150Kg/cm

∴符合要求

第四节主、端梁连接计算

一、主、端梁连接形式及受力分析

(一)、主、端梁连接形式

本产品主、端梁连接是采用螺栓+减载凸缘结构的形式,如图15所示。

主梁两端同横梁之间各用16个M24的螺栓(高强螺栓)连接。

(二)、受力分析这种结构的连接形式,经分析可以认为在主、横梁之间,垂直载荷由主梁鞍座承受,鞍座将承受剪力及挤压力。

这种情况下的螺栓主要承受拉力,其拉力主要是由起重机运行时的歪斜侧向力S1和起重机支承反力所造成的。

一般水平惯性对螺栓的影响可忽略而不计。

图15中,经受力分析,设螺栓d受拉力最大,以下将从螺栓d为计算对象。

这里仅验算最大轮压一侧的主.端梁连接强

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 研究生入学考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1