三相桥式全控整流电路课程.docx

上传人:b****8 文档编号:10999800 上传时间:2023-02-24 格式:DOCX 页数:16 大小:228.71KB
下载 相关 举报
三相桥式全控整流电路课程.docx_第1页
第1页 / 共16页
三相桥式全控整流电路课程.docx_第2页
第2页 / 共16页
三相桥式全控整流电路课程.docx_第3页
第3页 / 共16页
三相桥式全控整流电路课程.docx_第4页
第4页 / 共16页
三相桥式全控整流电路课程.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

三相桥式全控整流电路课程.docx

《三相桥式全控整流电路课程.docx》由会员分享,可在线阅读,更多相关《三相桥式全控整流电路课程.docx(16页珍藏版)》请在冰豆网上搜索。

三相桥式全控整流电路课程.docx

三相桥式全控整流电路课程

三相桥式全控整流电路的设计

摘要:

本设计是采用晶闸管构成的三相桥式整流电路,输出直流电压?

V,功率?

w;本设计包括主电路的设计和驱动电路的设计,介绍了主电路的工作原理,阐述了驱动电路的特点。

关键词:

整流;变压;触发;过电压;保护电路。

1前言

整流电路技术在工业生产上应用极广。

如调压调速直流电源、电解及电镀的直流电源等。

整流电路就是把交流电能转换为直流电能的电路。

大多数整流电路由变压器、整流主电路和滤波器等组成。

它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。

整流电路通常由主电路、滤波器和变压器组成。

20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。

滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。

变压器设置与否视具体情况而定。

变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。

整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。

把交流电变换成大小可调的单一方向直流电的过程称为可控整流。

整流器的输入端一般接在交流电网上。

为了适应负载对电源电压大小的要求,或者为了提高可控整流装置的功率因数,一般可在输入端加接整流变压器,把一次电压U1,变成二次电压U2。

由晶闸管等组成的全控整流主电路,其输出端的负载,我们研究是电阻性负载、电阻电感负载(如直流电动机的励磁绕组,滑差电动机的电枢线圈等)。

以上负载往往要求整流能输出在一定范围内变化的直流电压。

为此,只要改变触发电路所提供的触发脉冲送出的早晚,就能改变晶闸管在交流电压U2一周期内导通的时间,这样负载上直流平均值就可以得到控制。

2原理及方案

三相桥式全控整流电路系统通过变压器与电网连接,经过变压器的耦合,晶闸管主电路得到一个合适的输入电压,使晶闸管在较大的功率因数下运行。

变流主电路和电网之间用变压器隔离,还可以抑制由变流器进入电网的谐波成分。

保护电路采用RC过电压抑制电路进行过电压保护,利用快速熔断器进行过电流保护。

采用锯齿波同步KJ004集成触发电路,利用一个同步变压器对触发电路定相,保证触发电路和主电路频率一致,触发晶闸管,使三相全控桥将交流整流成直流,带动直流电动机运转。

结构框图如图1-1所示。

整个设计主要分为主电路、触发电路、保护电路三个部分。

框图中没有表明保护电路。

当接通电源时,三相桥式全控整流电路主电路通电,同时通过同步电路连接的集成触发电路也通电工作,形成触发脉冲,使主电路中晶闸管触发导通工作,经过整流后的直流电通给直流电动机,使之工作。

图1三相桥式全控整流电路结构图

3主电路的设计及器件选择

实验参数设定负载为220V、305A的直流电机,采用三相整流电路,交流测由三相电源供电,设计要求选用三相桥式全控整流电路供电,主电路采用三相全控桥。

3.1三相全控桥的工作原理

如图2-1所示,为三相桥式全控带阻感负载,根据要求要考虑电动机的电枢电感与电枢电阻,故为阻感负载。

习惯将其中阴极连接在一起的3个晶闸管称为共阴极组;阳极连接在一起的3个晶闸管称为共阳极组。

共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。

晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。

变压器为

型接法。

变压器二次侧接成星形得到零线,而一次侧接成三角形避免3次谐波流入电网

图2三相桥式全控整流电路带电动机(阻感)负载原理图

3.1.1三相全控桥的工作特点

⑴2个晶闸管同时通形成供电回路,其中共阴极组和共阳极组各1个,且不能为同1相器件。

⑵对触发脉冲的要求:

按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差60。

共阴极组VT1、VT3、VT5的脉冲依次差120。

共阳极组VT4、VT6、VT2也依次差120。

同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180。

一周期脉动6次,每次脉动的波形都一样,故该电路为6脉波整流电路。

⑷晶闸管承受的电压波形与三相半波时相同,晶闸管承受最大正、反向电压的关系也相同。

3.1.2阻感负载时的波形分析

三相桥式全控整流电路大多用于向阻感负载和反电动势阻感负载供电(即用于直流电机传动),下面主要分析阻感负载时的情况,因为带反电动势阻感负载的情况,与带阻感负载的情况基本相同。

当α≤60度时,

波形连续,电路的工作情况与带电阻负载时十分相似,各晶闸管的通断情况、输出整流电压

波形、晶闸管承受的电压波形等都一样。

区别在于负载不同时,同样的整流输出电压加到负载上,得到的负载电流

波形不同,电阻负载时

波形与

的波形形状一样。

而阻感负载时,由于电感的作用,使得负载电流波形变得平直,当电感足够大的时候,负载电流的波形可近似为一条水平线。

图2-2和图2-3分别给出了三相桥式全控整流电路带阻感负载α=0度和α=30度的波形。

图2-2中除给出

波形和

波形外,还给出了晶闸管VT1电流iVT1的波形,可与带电阻负载时的情况进行比较。

由波形图可见,在晶闸管VT1导通段,iVT1波形由负载电流

波形决定,和

波形不同。

图2-3中除给出

波形和

波形外,还给出了变压器二次侧a相电流

的波形,在此不做具体分析。

图3触发角为0度时的波形图图4触发角为30时的波形图

当α>60度时,阻感负载时的工作情况与电阻负载时不同,电阻负载时

波形不会出现负的部分,而阻感负载时,由于电感L的作用,

波形会出现负的部分。

图2-4给出了α=90度时的波形。

若电感L值足够大,

中正负面积将基本相等,

平均值近似为零。

这说明,带阻感负载时,三相桥式全控整流电路的α角移相范围为90度。

图5触发角为90时的波形图

3.2参数计算

3.2.1整流变压器的选择

由系统要求可知,整流变压器一、二次线电压分别为380V和220V,由变压器为

接法可知变压器二次侧相电压为:

(公式1)

变比为:

(公式2﹚

变压器一次和二次侧的相电流计算公式为:

﹙公式3﹚

﹙公式4﹚

而在三相桥式全控中

﹙公式5﹚

﹙公式6﹚

所以变压器的容量分别如下:

变压器次级容量为:

﹙公式7﹚

变压器初级容量为:

﹙公式8﹚

变压器容量为:

﹙公式9﹚

即:

变压器参数归纳如下:

初级绕组三角形接法

;次级绕组星形接法,

;容量选择为9.46989kW。

3.2.2晶闸管的选择

⑴晶闸管的额定电压

由三相全控桥式整流电路的波形(图2-4)分析知,晶闸管最大正、反向电压峰值均为变压器二次线电压峰值

﹙公式10﹚

故桥臂的工作电压幅值为:

﹙公式11﹚

考虑裕量,则额定电压为:

﹙公式12﹚

⑵晶闸管的额定电流

晶闸管电流的有效值为:

﹙公式13﹚

考虑裕量,故晶闸管的额定电流为:

﹙公式14﹚

3.2.3平波电抗器的选择

为了限制输出电流脉动和保证最小负载电流时电流连续,整流器电路中常要串联平波电抗器。

对于三相桥式全控整流电路带电动机负载系统,有:

﹙公式15﹚

其中,(单位为mH)中包括整流变压器的漏电感、电枢电感和平波电抗器的电感。

由题目要求:

当负载电流降至20A时电流仍连续。

所以

取20A。

所以有:

﹙公式16﹚

4触发电路设计

控制晶闸管的导通时间需要触发脉冲,常用的触发电路有单结晶体管触发电路,设计利用KJ004构成的集成触发器实现产生同步信号为锯齿波的触发电路。

4.1集成触发电路

本系统中选择模拟集成触发电路KJ004,KJ004可控硅移相触发电路适用于单相、三相全控桥式供电装置中,作可控硅的双路脉冲移相触发。

KJ004器件输出两路相差180度的移相脉冲,可以方便地构成全控桥式触发器线路。

KJ004电路具有输出负载能力大、移相性能好、正负半周脉冲相位均衡性好、移相范围宽、

对同步电压要求低,有脉冲列调制输出端等功能与特点。

原理图如下:

图6KJ004的电路原理图

4.2KJ004的工作原理

如图3-1KJ004的电路原理图所示,点划框内为KJ004的集成电路部分,它与分立元件的同步信号为锯齿波的触发电路相似。

V1~V4等组成同步环节,同步电压uS经限流电阻R20加到V1、V2基极。

在uS的正半周,V1导通,电流途径为(+15V-R3-VD1-V1-地);在uS负半周,V2、V3导通,电流途径为(+15V-R3-VD2-V3-R5-R21―(―15V))。

因此,在正、负半周期间。

V4基本上处于截止状态。

只有在同步电压|uS|<0.7V时,V1~V3截止,V4从电源十15V经R3、R4取得基极电流才能导通。

电容C1接在V5的基极和集电极之间,组成电容负反馈的锯齿波发生器。

在V4导通时,C1经V4、VD3迅速放电。

当V4截止时,电流经(+15V-R6-C1-R22-RP1-(-15V))对C1充电,形成线性增长的锯齿波,锯齿波的斜率取决于流过R22、RP1的充电电流和电容C1的大小。

根据V4导通的情况可知,在同步电压正、负半周均有相同的锯齿波产生,并且两者有固定的相位关系。

V6及外接元件组成移相环节。

锯齿波电压uC5、偏移电压Ub、移相控制电压UC分别经R24、R23、R26在V6基极上叠加。

当ube6>+0.7V时,V6导通。

设uC5、Ub为定值,改变UC,则改变了V6导通的时刻,从而调节脉冲的相位。

V7等组成了脉冲形成环节。

V7经电阻R25获得基极电流而导通,电容C2由电源+15V经电阻R7、VD5、V7基射结充电。

当V6由截止转为导通时,C2所充电压通过V6成为V7基极反向偏压,使V7截止。

此后C2经(+15V-R25-V6-地)放电并反向充电,当其充电电压uc2≥+1.4V时,V7又恢复导通。

这样,在V7集电极就得到固定宽度的移相脉冲,其宽度由充电时间常数R25和C2决定。

V8、V12为脉冲分选环节。

在同步电压一个周期内,V7集电极输出两个相位差为180°的脉冲。

脉冲分选通过同步电压的正负半周进行。

如在us正半周V1导通,V8截止,V12导通,V12把来自V7的正脉冲箝位在零电位。

同时,V7正脉冲又通过二极管VD7,经V9~V11放大后输出脉冲。

在同步电压负半周,情况刚好相反,V8导通,V12截止,V7正脉冲经V13~V15放大后输出负相脉冲。

说明:

1)KJ004中稳压管VS6~VS9可提高V8、V9、V12、V13的门限电压,从而提高了电路的抗干扰能力。

二极管VD1、VD2、VD6~VD8为隔离二极管。

2)采用KJ004元件组装的六脉冲触发电路,二极管VD1~VD12组成六个或门形成六路脉冲,并由三极管V1~V6进行脉冲功率放大。

3)由于V8、V12的脉冲分选作用,使得同步电压在一周内有两个相位上相差的脉冲产生,这样,要获得三相全控桥式整流电路脉冲,需要六个与主电路同相的同步电压。

因此主变压器接成D,yn11及同步变压器也接成D,yn11情况下,集成触发电路的同步电压uSa、uSb、uSc分别与同步变压器的uSA、uSB、uSC相接RP1~RP3为锯齿波斜率电位器,RP4~RP6为同步相位

4.3集成触发器电路图

三相桥式全控触发电路由3个KJ004集成块和1个KJ041集成块(KJ041内部是由12个二极管构成的6个或门)及部分分立元件构成,可形成六路双脉冲,再由六个晶体管进行脉冲放大即可,分别连到VT1,VT2,VT3,VT4,VT5,VT6的门极。

6路双脉冲模拟集成触发电路图如图3-2所示:

图7集成触发电路图

5保护电路的设计

为了保护设备安全,必须设置保护电路。

保护电路包括过电流与过电流保护,大致可以分为两种情况:

一种是在适当的地方安装保护器件,例如R-C阻容吸收回路、限流电感、快速熔断器等;另一种则是采用电子保护电路,检测设备的输出电压或输入电流,当输出电压或输入电流超过允许值时,借助整流触发控制系统使整流桥短时内工作于有源逆变工作状态,从而抑制过电压或过电流的数值。

本例中设计的三相桥式全控整流电路为大功率装置,故考虑第一种保护方案,分别对晶闸管、交流侧、直流侧进行保护设电路的设计。

5.1晶闸管的保护电路

⑴、晶闸管的过电流保护:

过电流可分为过载和短路两种情况,可采用多种保护措施。

对于晶闸管初开通时引起的较大的di/dt,可在晶闸管的阳极回路串联入电感进行抑制;对于整流桥内部原因引起的过流以及逆变器负载回路接地时可以采用接入快速熔短器进行保护。

如图4-1所示:

图8串联电感及熔断器抑制回路

⑵、晶闸管的过电压保护:

晶闸管的过电压保护主要考虑换相过电压抑制。

晶闸管元件在反向阻断能力恢复前,将在反向电压作用下流过相当大的反向恢复电流。

当阻断能力恢复时,因反向恢复电流很快截止,通过恢复电流的电感会因高电流变化率产生过电压,即换相过电压。

为使元件免受换相过电压的危害,一般在元件的两端并联RC电路。

如图4-2所示:

图9并联RC电路阻容吸收回路

5.2交流侧保护电路

晶闸管设备在运行过程中会受到由交流供电电网进入的操作过电压和雷击过电压的侵袭,同时设备自身运行中以及非正常运行中也有过电压出现,所以要进行过电压保护,可采用如图4-3所示的反向阻断式过电压抑制RC保护电路。

整流电路正常工作时,保护三相桥式整流器输出端电压为变压器次级电压的峰值,输出电流很小,从而减小了保护元件的发热。

过电压出现时,该整流桥用于提供吸收过电压能量的通路,电容将吸取过电压能量转换为电场能量;过电压消失后,电容经、放电,将储存的电场能量释放,逐渐将电压恢复到正常值。

图10反向阻断式过电压抑制RC电路

5.3直流侧阻容保护电路

直流侧也可能发生过电压,在图4-4中,当快速熔断器熔断或直流快速开关切断时,因直流侧电抗器释放储能,会在整流器直流输出端造成过电压。

另外,由于直流侧快速开关(或熔断器)切断负载电流时,变压器释放的储能也产生过电压,尽管交流侧保护装置能适当地保护这种过电压,仍会通过导通的晶闸管反馈到直流侧来,为此,直流侧也应该设置过电压保护,用于抑制过电压。

图11直流侧阻容保护

 

心得体会

通过这次课程设计我懂得了许多的课本上所没有的知识,使我受益匪浅。

思路即出路。

当初没有思路,诚如举步维艰,茫茫大地,不见道路。

在对理论知识梳理掌握之后,茅塞顿开,柳暗花明,思路如泉涌,高歌“条条大路通罗马”。

顿悟,没有思路便无出路,原来思路即出路。

实践出真知。

文革之后,关于真理的大讨论最终结果是“实践是检验真理的唯一标准”,自从耳闻以来,便一直以为马克思主义中国化生成的教条。

时至今日,课程设计基本告成,才切身领悟“实践是检验真理的唯一标准”,才明晓实践出真知。

创新求发展。

“创新”目前在我国已经提升到国家发展战略地位,足见“创新”的举足轻重。

我们要从小处着手,顺应时代发展潮流,在课程设计中不忘在小处创新,未必是创新技术,但凡创新思维亦可,未必成功,只要实现创新思维培育和锻炼即可。

 

参考文献

[1]王兆安、黄俊,电力电子技术.北京:

机械工业出版社,2008

[2]王维平,现代电力电子技术及应用.南京:

东南大学出版社,1999

[3]叶斌,电力电子应用技术及装置.北京:

铁道出版社,1999

[4]刘志刚主编.电力电子学.第一版.北京:

清华大学出版社,2004年6月

[5]马建国,电子系统设计.北京:

高等教育出版社,2004

[6]王锁萍,电子设计自动化教程.四川:

电子科技大学出版社2002

[7][CIGRE_PAVC].CigreWorkingGroup34.08,ProtectionAgainstVoltageCollapse,CIGRE,1998.

 

致谢

我知道电力电子技术是一门基础性和支持很强的技术,但我真正体会到这一点却是在这次课设的过程中。

通过本次课程设计,我对电力电子技术这门课有了很深的了解,对各个知识点有个更好的掌握。

本次设计,我所设计的是三相桥式全控整流电路,开始设计时我遇到了很多的问题,使我有种很深的无助感。

好在后来经过仔细查阅资料,各类图书,以及老师和同学的帮助,我顺利完成了课设中的任务。

在此我要感谢我的指导老师王老师对我的悉心指导,感谢王老师在百忙之中给我的帮助。

在课程设计的过程中我培养了自己独立工作的能力,给自己的未来树立了信心,我相信它会对我今后的工作、学习、生活产生重要影响,我相信这次的课程设计会让我终身收益!

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高等教育 > 经济学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1