The effect of a boiling additive on R123 condensation on a vertical integral finsurface.docx

上传人:b****8 文档编号:10843225 上传时间:2023-02-23 格式:DOCX 页数:22 大小:37.69KB
下载 相关 举报
The effect of a boiling additive on R123 condensation on a vertical integral finsurface.docx_第1页
第1页 / 共22页
The effect of a boiling additive on R123 condensation on a vertical integral finsurface.docx_第2页
第2页 / 共22页
The effect of a boiling additive on R123 condensation on a vertical integral finsurface.docx_第3页
第3页 / 共22页
The effect of a boiling additive on R123 condensation on a vertical integral finsurface.docx_第4页
第4页 / 共22页
The effect of a boiling additive on R123 condensation on a vertical integral finsurface.docx_第5页
第5页 / 共22页
点击查看更多>>
下载资源
资源描述

The effect of a boiling additive on R123 condensation on a vertical integral finsurface.docx

《The effect of a boiling additive on R123 condensation on a vertical integral finsurface.docx》由会员分享,可在线阅读,更多相关《The effect of a boiling additive on R123 condensation on a vertical integral finsurface.docx(22页珍藏版)》请在冰豆网上搜索。

The effect of a boiling additive on R123 condensation on a vertical integral finsurface.docx

TheeffectofaboilingadditiveonR123condensationonaverticalintegralfinsurface

TheeffectofaboilingadditiveonR123condensationonaverticalintegralfinsurface

Abstract

Thispaperexaminestheeffectoftheadditionof0.5%massisopentanetoR123onthevapor-spacecondensationheattransferofR123.Inapreviousstudy,thepoolboilingperformanceofR123wasimprovedbyadding0.5%massisopentane.Consequently,theimpetusofthepresentstudywasadesiretoquantifytheconsequenceoftheboilingadditiveonthecondensationheattransferperformanceofpureR123.Inthisway,theneteffectoftheadditiveonthecycleperformanceofpureR123canbeestimated.

ThedataconsistedoftheheatfluxandthewalltemperaturediferencemeasurementforpureR123andR123/isopentane(99.5/0.5)onanintegral-trapezoidal-finsurface.Thetem-peratureofthesaturatedvaporwasheldconstantat313.15Kforallofthetests.Onaverage,theR123/isopentanemixtureexhibiteda4%smallerheatfluxthanthatofpureR123.

Presumably,thedegradationwascausedbythezeotropicbehaviorofthemixture,whichledtoalossofavailabledrivingtemperaturediferenceforheattransferacrosstheliquidfilm.Consideringthattheboilingperformancewasenhancedonaverageby10%withtheadditionof0.5%massisopentane,isopentanemaystillbeaviablemeansofimprovingthecycleperformanceofR123despitethe4%condensationheattransferdegradation.#2000ElsevierScienceLtdandIIR.Allrightsreserved.

kyewords:

Heattransfer;Masstransfer;Condensation;Refrigerant;R123;Additive;Heattransfercoefficient;Surface;Finnedtube.

Introduction

Fortherefrigerationandair-conditioningindustry,aliquidadditivewouldbeaneconomicalmeanstoreducemanufacturingand/oroperatingcosts.Forexample,aliquidadditivefor1,1-dichloro-2,2,2-tri-uoroethane(R123)wouldenableexistingwaterchillerstooperatemoreeffcientlyorenablenewwaterchillerstomeetthesamedutywithfewertubes.

However,theeconomicbenefitofadditivesthatenhanceboilingheattransfercanberealizedonlywhentheadditivedoesnotsignificantlydegradethecondensationheattransfer.Kedzierski[1]measuredasignificantenhancementofR123poolboilingwiththeadditionof1and2%hexanebymasstoR123.HeusedtheGibbsadsorptionequa-tionandtheYoungandDupreequationtospeculatethattheboilingheattransferenhancementofR123bytheadditionofhexanewascausedbyanaccumulationofhydrocarbonattheboilingsurface.Inessence,thegreaterconcentrationofhydrocarbonor``excesslayer''attheheattransfersurfacecausedareductionofthesurfaceenergybetweenthesolidsurfaceandtheliquid.

Theexistenceofanexcesslayerattheliquidsolidinterfaceisanalogoustotheexistenceofasurfactantinducedexcesslayerataliquidvaporinterface.Conse-quently,thehydrocarbonisnotatypicalsurfactantbecauseitaccumulatesatthesolidliquidinterfaceratherthantheliquidvaporinterface.

However,thereductionintheliquidsolidsurfaceenergyresultsinasimilarreductioninbubbledeparturediameterthatoccurswithaconventionalsurfactant.Asaconsequenceofthebubblesizereduction,theactivesitedensityincreases.Aboilingheattransferenhancementexistedwhenafavorablebalancebetweenanincreaseinsitedensityandareductioninbubblesizeoccurred.

Inanotherboilingadditivestudy,Kedzierski[2]speculatedthatfoulingcausedamoremodestimprove-mentintheheatfuxofR123withtheadditionofiso-pentaneandhexane.Overall,theR123/isopentane(99.5/0.5)bymassmixtureexhibiteda10%heatenhancementforheatwithintherangeof10to90kW/m2.Similarly,theR123/hexane(99.5/0.5)mixtureshowedanoverall4%andamaximumof13%heatenhancementoverthatofpureR123.

ThepurposeofthepresentstudyistodeterminetheeffectofaboilingadditiveonthecondensationheattransferperformanceofR123.Aboilingadditiveisunlikelytobecommerciallyviableifitcausesaheattransferdegradationinthecondenserthatmorethanofsetstheheattransferenhancementintheevaporator.Assumingthatisopentaneisabetteradditivethanhex-anefortheenhancementofR123boilingonallsurfaces,isopentanemaypotentiallyproducethegreatestnetheattransferimprovementbetweenthecondenserandtheevaporator.Basedonthatpremise,thevapor-spacecondensationheattransferperformanceofpureR123andanR123/isopentane(99.5/0.5)bymassmixtureweremeasuredonavertical,trapezoidalansurface.

Apparatus

Fig.1showsaschematicoftheapparatusthatwasusedtomeasurethevapor-spacecondensationheattransferdataofthisstudy.Specifically,theapparatuswasusedtomeasurethevaporsaturationtemperature(Tv),theaveragecondensationheat(q00),andthewalltemperature(Tw)ofthetestsurfaceattherootofthefin.Thethreeprincipalcomponentsoftheapparatusweretestchamber,postcondenser,andboiler.Theinternaldimensionsofthetestchamberwereapproximately254200130mm.

Theboilerwaschargedwithapproximately10kgofR123.Hotcitywaterflowedinsidethetubesoftheboilertoheatthetestrefrigerantontheshell-sideoftheboiler.Thetestsectionwasvisi-blethroughthree,flatquartzwindows.Theopposingsideofthefinnedcondensingtestsurfacewascooledwithhighvelocity(2.5m/s)waterflow.Varyingthetemperatureofthecoolingwatervariedtheheatfluxofthetestsection.

Thevaporproducedbytheboilerwascondensedbythepostcondenserandthetestsectionandreturnedbygravitytotheliquidpool.Thepostcondenserwasidenticaltotheshell-and-tubeboiler;however,chilledwaterflowedinsidethetubeswhilethevaporcondensedontheoutsideofthetubes.Thedutyoftheboilerandthepostcondenserweresignificantlylargesothatawidevariationinthedutyofthetestsurfacewouldnotafectthesaturationpressureofthetestapparatus.Thepurgerandthedesiccantfilterremovednon-condensiblegasesandwater,respectively,fromthetestrefrigerantafterchargingandbeforetesting.

Toreducetheerrorsassociatedwiththesaturationtemperaturemeasurement,thesaturationtemperatureofthevaporwasmeasuredwithtwo450mmlong1.6mmdiameterstainlesssteelsheathedthermocouples.Thesmalldiameterprovidedforarelativelyrapidresponsetime.Approximately180mmofeachthermo-couplelengthwasexposedtothevaporofthetestchamber.Theportionofeachthermocouplethatwasinthetestchamberwasshieldedwitha6mmdiameterstainlesssteeltubeandwasincontactwiththesaturatedrefrigerantvapor.Thetipsofthetwothermocoupleswereplacedneartheloweredgeofthetestplateandapproximately60and95mm,respectively,fromthefrontofit.

Testsurface

Fig.2showstheoxygen-freehigh-conductivity(OFHC)copperintegral-trapezoidal-fintestplateusedinthisstudy.Theintegral-trapezoidal-finsurfaceinthisstudywasmachineddirectlyontothetopofthetestplatebyelectricdischargemachining(EDM).

Fig.3showsadrawingofthefincrosssection.Thefinpitchwas1.36mm.Thesurfacehadnominally746finspermeterorientedalongthelongaxisoftheplate.Theratioofthesurfaceareatotheprojectedareaofthesurfacewas2.87.Theratioofthefinarea(Af)tothetotalarea(Ao)was0.74.Thefin-tipwidthandthefin-heightwere0.24and1.53mm,respectively.

Measurementsanduncertainties

Thestandarduncertainty(ui)isthepositivesquarerootoftheestimatedvarianceu2.Theindividualstandarduncertaintiesarecombinedtoobtaintheexpandeduncertainty(U).Theexpandeduncertaintyiscommonlyreferredtoasthelawofpropagationofuncertaintywithacoveragefactor.Allmeasurementuncertaintiesarereportedfora95%confidenceinterval.

Thecopper-constantanthermocouplesandthedataacquisitionsystemwerecalibratedagainstaglass-rodstandardplatinumresistancethermometer(SPRT)andareferencevoltagetoaresidualstandarddeviationof0.013K.TheNISTthermometrygroupcalibratedthefixedSPRTtotwofixedpointshavingexpandeduncer-taintiesof0.06mKand0.38mK.

Aquartzthermo-meter,whichwascalibratedwithadistilledicebath,agreedwiththeSPRTtemperaturetowithinapproxi-mately0.003K.Nocorrelationwasfoundtoexistbetweenthemeasuredthermocoupleelectromotiveforce(EMF)andameasured1mVreference.Consequently,therewasnomeasurabledriftintheacquisitionvoltagemeasurementoveramonthperiod.Beforeeachtestrun,

themeasurementsofathermocoupleinthebathwerecomparedwiththeSPRT.ThemedianabsolutediferencebetweenthethermocoupleandtheSPRTwas0.02Koverthedurationoftheentirestudy.Consideringtheᆵuctuationsinthesaturationtemperatureduringthetestandthestandarduncertaintiesinthecalibration,theexpandeduncertaintyoftheaveragesaturationtem-peraturewasnogreaterthan0.04K.

Consequently,itisbelievedthattheexpandeduncertaintyofthetempera-turemeasurementswaslessthan0.1K.Thesaturationtemperaturewasalsoobtainedfromapressuretrans-ducermeasurementwithanexpandeduncertaintyoflessthan0.03kPa.Theexpandeduncertaintyofthesaturationtemperaturefromaregression(witharesi-dualstandarddeviationof0.6mK)ofequilibriumdata[3]forR123was0.17K.Thesaturationtemperatureobtainedfromthethermocoupleandthepressuremea-surementnearlyalwaysagreedwithinヒ0.17KforthepureR123data.

Fig.2showsthecoordinatesystemforthe20wellswhereindividualthermocoupleswereforce-fittedintothesideofthetestplate.Thewellswere16mmdeeptoreduceconductionerrors.UsingamethodgivenbyEckerta

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 文学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1