变频调速器在注塑机节能改造中的应用.docx

上传人:b****7 文档编号:10720444 上传时间:2023-02-22 格式:DOCX 页数:12 大小:206.29KB
下载 相关 举报
变频调速器在注塑机节能改造中的应用.docx_第1页
第1页 / 共12页
变频调速器在注塑机节能改造中的应用.docx_第2页
第2页 / 共12页
变频调速器在注塑机节能改造中的应用.docx_第3页
第3页 / 共12页
变频调速器在注塑机节能改造中的应用.docx_第4页
第4页 / 共12页
变频调速器在注塑机节能改造中的应用.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

变频调速器在注塑机节能改造中的应用.docx

《变频调速器在注塑机节能改造中的应用.docx》由会员分享,可在线阅读,更多相关《变频调速器在注塑机节能改造中的应用.docx(12页珍藏版)》请在冰豆网上搜索。

变频调速器在注塑机节能改造中的应用.docx

变频调速器在注塑机节能改造中的应用

变频调速器在注塑机节能改造中的应用

收藏此信息打印该信息添加:

魏世化来源:

未知

 

1引言

近几年塑料行业发展越来越迅速,其中注塑行业也正迎来一个飞速发展的机遇,但同时同行业间的竞争也日渐激烈,各厂家除了重视产品质量、品牌竞争外,也越来越重视生产成本的控制。

从注塑机工艺过程知道,在注塑成型产品成本中电能量消耗成本占了很大的比例,因而能否有效减少电能损耗受到各注塑机厂家和用户关注。

随着变频调速技术的推广,变频调速在传动控制和节能领域已日渐得到广泛应用,尤其在泵类负载场合采用变频控制节能效果显著,本文以康沃注塑机专用变频器为例介绍了注塑机变频改造可行性和改造中常出现的问题及处理方法,举例说明了注塑机变频改造节电效果及收回情况。

2注塑机变频改造可行性

2.1节能改造的提出

目前市场上的各类注塑机约90%以上是采用液压传动和电液比例控制方式,事实上采用电液阀控(即高压节流)控制模式注塑机工作时存在很大的能量浪费,一般一个产品的注塑成型过程如图1。

图1注塑过程示意图

各个过程所需的速度和压力因不同工艺而不同,即所需的液压油流量不同,因而注塑机整个动作过程对油泵电机来说是个变负载过程,在定量泵注塑机液压系统中,油泵电机始终是以恒定转速提供恒定流量的液压油,各个动作中相应多余的液压油则通过溢流阀回流,从而造成电能的浪费,据统计由电液阀控模式造成电能损耗高达36~68%,根据注塑机设备工艺油泵电机耗电占整个设备耗电比例高达65~80%,因而对阀控电液模式进行节能改造具有很大潜力。

2.2节能改造原理

泵类负载工作特性可知泵的流量与转速成比例关系,泵的扬程与转速成平方关系,泵电机轴功率与转速的立方关系,如下公式所示:

q2/q1=n2/n1;h2/h1=(n2/n1)2;p2/p1=(n2/n1)3

其中:

q为流量;n为转速;h为扬程。

原有注塑机系统采用阀门控制,当流量由qa减少到qb时由于管阻特性,工作点由a点转移b点,消耗的功率与0qbbhb成正比,若采用变频控制这时因阀门全开,其管理特性不变,工作点由a点转移到c点,消耗的功率与0qbchc成正比,从图2可知采用变频调速比采用阀门控制节能,且随着转速的降低电机功率成立方关系减少,如果能根据注塑工艺适时地调节油泵电机转速即可达到节能目的。

图2阀门控制与变频控制节能比较曲线图

目前三相异步电动机大多采用变频调速,由电机同步转速公式:

n=60(1-s)f/p

其中:

s为转差率;f为供电频率;p极对数

由上式知当改变电源频率便可改变电机转速,因而采用注塑机比例流量阀及比例压力阀的控制信号同步控制油泵马达的变频器,使油泵电机的转速与注塑机工作所需的压力、流量成正比,从而使溢流阀的回流量减到最小,液压系统输出功率与注塑机生产所需功率相匹配,便可达到节能目的,据统计其单机节电率可达25%~65%。

3康沃变频器的应用

3.1康沃注塑机专用变频器的特点

康沃注塑机专用变频器(cvf-zs系列)是在通用变频器(cvf-g2系列)的基础上根据注塑机工作特性专门设计的变频调速器,通过对阀控电流、电压信号的采集,经cpu处理后对油泵电机进行相应的调速,从而满足注塑机工艺要求,它具有以下特点:

(1)具有适合注塑机专用的频率给定信号通道

通用变频器的频率给定信号标准为0~10v电压信号或4~20ma电流信号,但注塑机专用变频器的具有0~1a/10v信号接收通道,康沃zs系列变频器可接入0~1a电流信号,而不需要另外加装信号转换电路。

(2)过载能力强、响应速度快

一般注塑产品的周期相对较短,从10几秒到几分钟,一个成型产品从开模到合模各个过程动作要求迅速,采用变频控制时油泵电机负载频繁变化,这就要求变频器有很强的过载能力,康沃zs系列变频器根据阀控信号进行快速升降速,加减速时间可达0.5s~1s。

康沃注塑机专用变频器根据注塑的工艺要求设计,已在海天、震雄等品牌注塑机改造中得以成功应用。

3.2变频改造电路

注塑机变频改造时采用:

变频+工频控制方式,其控制柜主电路由电度表、zs变频器和工频旁路接触器等构成,控制电路由工频/变频切换开关、启动、复位开关、指示灯等构成。

(1)变频控制柜主电路

如图3示,采用工频旁路目的是为了在变频器出故障时可直接切换到工频运行,而不影响生产。

图3注塑机改造主电路图

图3中zd为断路器,k1、k2、k3为接触器,sb3为故障复位按钮。

在改造注塑机时仍保留注塑机原有控制电路中的星-三角转换电路,这样可方便改造同时保持注塑原来的控制特性。

(2)变频控制柜控制电路

如图4所示。

图4注塑机变频柜控制电路图

图4中sb1为工频/变频转换开关,选用三级开关;sb2为变频器启动按钮;l1为总电源指示灯;l2为工频运行指示灯;l3变频运行指示灯,l4为变频器故障指示灯,其故障信号由变频器ta、tc输出;km1、km2变频运行接触器;km3为工频运行接触器。

3.3变频主要参数设置

以康沃cvf-zs-4t0150变频器在注塑机中应用为例,采用比例流量+比例压力信号两路信号控制,主要参数设定如表1所示。

表1cvf-zs-4t0150的主要参数设定

康沃第二代注塑机专用变频器在第一代机型的基础上增加了两路信号比较、信号放大等功能更加满足注塑机不同的工艺要求。

4调试中常出现的问题及处理方法

4.1调试前注意事项

注塑机变频节能电气改造相对比较简单,但在改造前应详细了解注塑机工况,熟悉注塑机工艺流程,调试时应注意以下事项:

安装前查清注塑机原有电路接线方式,包括主电路和控制电路;仔细观察注塑机工频运行是否正常,油泵马达是否经常处于过载状态;根据注塑机的模具及注塑工艺观察注塑机节电改造的潜能;控制信号线路注意正负极性不要接反;信号线与主回路线要分开布线等。

4.2调试常见问题及处理方法

由于注塑机工艺的特殊性,在改造中会遇到各种故障,以下为在注塑机变频改造中常遇到的问题及处理方法。

(1)变频器频率无变化

由于变频器采用注塑机阀控电流信号进行调速,变频器运行后出现频率显示为0.0(有的变频器显示为0)现象,其主要原因为信号极性接反;信号取错;信号接线端口与参数设定不符;注塑机辅助电源故障等,出现这种故障应先查明注塑机阀控制的类别是电流信号、电压信号还是脉冲控制信号(部分机型),及信号正负极性是否与变频器控制端子对应。

(2)油泵噪音大

变频器运行后有些注塑机会发出异常的噪音,这时应判断噪声源在何处,是来自电机还是油泵,若为油泵的噪音则可能原因有:

注塑机液压油过少,有空气吸入;注塑机滤油器或油路阻塞;注塑机油泵叶片磨损较严重;遇到以情况应先检查注塑机油泵,排除故障后方可运行,另外当注塑处于低速高压工作状态时,也会出现油泵噪音异常情况,这时适当提高速度信号。

(3)温度控制干扰

注塑机变频器改造中常遇见的问题是改造后因干扰注塑机不能正常运行,注塑机加热单元采用热电偶检测温度,这种检测元件容易受谐波干扰,从而造成注塑机温度显示和控制不准确,这时可从以下方面排除干扰:

尽量缩短变频器与注塑机电动机之间的连线,动力线用金属软管套装,动力线与温度检测线不要靠近走线;在变频器近端主回路线缆加装电抗器或磁环;变频器可靠接地;或给注塑机内部温控电偶供电电源加阻容滤波电路,如图5所示。

图5注塑机温度干扰滤波电路图

其中a+为热电偶端;b+接温度控制板,处理时即在温度检测(热电偶)线路中对称地加入以上阻、容元器件以消除干扰。

5节能实例及收回

深圳横岗镇某电子厂主要生产吸尘器,其吸尘器外壳采用亿利达e-140品牌注塑机注塑成型,注塑机油泵电机为三相异步电机,其功率为15kw,采用康沃cvf-zs-4t0150变频器进行节能改造,经测试其节能情况如表2所示。

表2cvf-zs-4t0150变频器节能情况

以每天工作22h,每月工作28天计算,每月节电1478.4kwh,该电子厂所在工业区电价为0.7元/kwh,一台变频节能控制柜投资为9300元,使用约9个月后便收回投资,同时采用变频改后实现电机软启动;减少机械冲击;降低液压油温等,该厂自去年初改造以来系统运行稳定。

6结束语

随着变频技术的成熟,变频器在注塑机改造中日渐得以广泛应用,实践证明注塑机采用变频控制节能效果明显,值得推广和应用。

 简述通用变频器参数设置

收藏此信息打印该信息添加:

用户发布来源:

未知

 

变频器的设定参数较多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象,因此,必须对相关的参数进行正确的设定。

1、控制方式:

即速度控制、转距控制、PID控制或其他方式。

采取控制方式后,一般要根据控制精度进行静态或动态辨识。

2、最低运行频率:

即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。

而且低速时,其电缆中的电流也会增大,也会导致电缆发热。

3、最高运行频率:

一般的变频器最大频率到60Hz,有的甚至到400Hz,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。

4、载波频率:

载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。

5、电机参数:

变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。

6、跳频:

在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。

变频器参数设置

(二)

变频器功能参数很多,一般都有数十甚至上百个参数供用户选择。

实际应用中,没必要对每一参数都进行设置和调试,多数只要采用出厂设定值即可。

一、加减速时间

加速时间就是输出频率从0上升到最大频率所需时间,减速时间是指从最大频率下降到0所需时间。

通常用频率设定信号上升、下降来确定加减速时间。

在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。

加速时间设定要求:

将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:

防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。

加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。

二、转矩提升

又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围f/V增大的方法。

设定为自动时,可使加速时的电压自动提升以补偿起动转矩,使电动机加速顺利进行。

如采用手动补偿时,根据负载特性,尤其是负载的起动特性,通过试验可选出较佳曲线。

对于变转矩负载,如选择不当会出现低速时的输出电压过高,而浪费电能的现象,甚至还会出现电动机带负载起动时电流大,而转速上不去的现象。

三、电子热过载保护

本功能为保护电动机过热而设置,它是变频器内CPU根据运转电流值和频率计算出电动机的温升,从而进行过热保护。

本功能只适用于“一拖一”场合,而在“一拖多”时,则应在各台电动机上加装热继电器。

电子热保护设定值(%)=[电动机额定电流(A)/变频器额定输出电流(A)]×100%。

四、频率限制

即变频器输出频率的上、下限幅值。

频率限制是为防止误操作或外接频率设定信号源出故障,而引起输出频率的过高或过低,以防损坏设备的一种保护功能。

在应用中按实际情况设定即可。

此功能还可作限速使用,如有的皮带输送机,由于输送物料不太多,为减少机械和皮带的磨损,可采用变频器驱动,并将变频器上限频率设定为某一频率值,这样就可使皮带输送机运行在一个固定、较低的工作速度上。

五、偏置频率

有的又叫偏差频率或频率偏差设定。

其用途是当频率由外部模拟信号(电压或电流)进行设定时,可用此功能调整频率设定信号最低时输出频率的高低,如图1。

有的变频器当频率设定信号为0%时,偏差值可作用在0~fmax范围内,有的变频器(如明电舍、三垦)还可对偏置极性进行设定。

如在调试中当频率设定信号为0%时,变频器输出频率不为0Hz,而为xHz,则此时将偏置频率设定为负的xHz即可使变频器输出频率为0Hz。

六、频率设定信号增益

此功能仅在用外部模拟信号设定频率时才有效。

它是用来弥补外部设定信号电压与变频器内电压(+10v)的不一致问题;同时方便模拟设定信号电压的选择,设定时,当模拟输入信号为最大时(如10v、5v或20mA),求出可输出f/V图形的频率百分数并以此为参数进行设定即可;如外部设定信号为0~5v时,若变频器输出频率为0~50Hz,则将增益信号设定为200%即可。

七、转矩限制

可分为驱动转矩限制和制动转矩限制两种。

它是根据变频器输出电压和电流值,经CPU进行转矩计算,其可对加减速和恒速运行时的冲击负载恢复特性有显著改善。

转矩限制功能可实现自动加速和减速控制。

假设加减速时间小于负载惯量时间时,也能保证电动机按照转矩设定值自动加速和减速。

驱动转矩功能提供了强大的起动转矩,在稳态运转时,转矩功能将控制电动机转差,而将电动机转矩限制在最大设定值内,当负载转矩突然增大时,甚至在加速时间设定过短时,也不会引起变频器跳闸。

在加速时间设定过短时,电动机转矩也不会超过最大设定值。

驱动转矩大对起动有利,以设置为80~100%较妥。

制动转矩设定数值越小,其制动力越大,适合急加减速的场合,如制动转矩设定数值设置过大会出现过压报警现象。

如制动转矩设定为0%,可使加到主电容器的再生总量接近于0,从而使电动机在减速时,不使用制动电阻也能减速至停转而不会跳闸。

但在有的负载上,如制动转矩设定为0%时,减速时会出现短暂空转现象,造成变频器反复起动,电流大幅度波动,严重时会使变频器跳闸,应引起注意。

八、加减速模式选择

又叫加减速曲线选择。

一般变频器有线性、非线性和S三种曲线,通常大多选择线性曲线;非线性曲线适用于变转矩负载,如风机等;S曲线适用于恒转矩负载,其加减速变化较为缓慢。

设定时可根据负载转矩特性,选择相应曲线,但也有例外,笔者在调试一台锅炉引风机的变频器时,先将加减速曲线选择非线性曲线,一起动运转变频器就跳闸,调整改变许多参数无效果,后改为S曲线后就正常了。

究其原因是:

起动前引风机由于烟道烟气流动而自行转动,且反转而成为负向负载,这样选取了S曲线,使刚起动时的频率上升速度较慢,从而避免了变频器跳闸的发生,当然这是针对没有起动直流制动功能的变频器所采用的方法。

九、转矩矢量控制

矢量控制是基于理论上认为:

异步电动机与直流电动机具有相同的转矩产生机理。

矢量控制方式就是将定子电流分解成规定的磁场电流和转矩电流,分别进行控制,同时将两者合成后的定子电流输出给电动机。

因此,从原理上可得到与直流电动机相同的控制性能。

采用转矩矢量控制功能,电动机在各种运行条件下都能输出最大转矩,尤其是电动机在低速运行区域。

现在的变频器几乎都采用无反馈矢量控制,由于变频器能根据负载电流大小和相位进行转差补偿,使电动机具有很硬的力学特性,对于多数场合已能满足要求,不需在变频器的外部设置速度反馈电路。

这一功能的设定,可根据实际情况在有效和无效中选择一项即可。

与之有关的功能是转差补偿控制,其作用是为补偿由负载波动而引起的速度偏差,可加上对应于负载电流的转差频率。

这一功能主要用于定位控制。

十、节能控制

风机、水泵都属于减转矩负载,即随着转速的下降,负载转矩与转速的平方成比例减小,而具有节能控制功能的变频器设计有专用V/f模式,这种模式可改善电动机和变频器的效率,其可根据负载电流自动降低变频器输出电压,从而达到节能目的,可根据具体情况设置为有效或无效。

要说明的是,九、十这两个参数是很先进的,但有一些用户在设备改造中,根本无法启用这两个参数,即启用后变频器跳闸频繁,停用后一切正常。

究其原因有:

(1)原用电动机参数与变频器要求配用的电动机参数相差太大。

(2)对设定参数功能了解不够,如节能控制功能只能用于V/f控制方式中,不能用于矢量控制方式中。

(3)启用了矢量控制方式,但没有进行电动机参数的手动设定和自动读取工作,或读取方法不当。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 表格模板 > 合同协议

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1