相交线与平行线专题复习.docx

上传人:b****8 文档编号:10523670 上传时间:2023-02-17 格式:DOCX 页数:25 大小:259.14KB
下载 相关 举报
相交线与平行线专题复习.docx_第1页
第1页 / 共25页
相交线与平行线专题复习.docx_第2页
第2页 / 共25页
相交线与平行线专题复习.docx_第3页
第3页 / 共25页
相交线与平行线专题复习.docx_第4页
第4页 / 共25页
相交线与平行线专题复习.docx_第5页
第5页 / 共25页
点击查看更多>>
下载资源
资源描述

相交线与平行线专题复习.docx

《相交线与平行线专题复习.docx》由会员分享,可在线阅读,更多相关《相交线与平行线专题复习.docx(25页珍藏版)》请在冰豆网上搜索。

相交线与平行线专题复习.docx

相交线与平行线专题复习

相交线与平行线专题复习

2017年08月15日sun****chun的初中数学组卷

一•选择题(共10小题)

1.如图,三条直线ABCDEF相交于点O,若/A0D=2FOD/AOE=120,

则/FOD勺度数为()

S/、

A.30°B.40°C.50°D.60°

2.如图,已知AOLOBCOLD0/BOC节°,则/AOD的度数为()

E0B

A.B°—90°B.2B°—90°C.180°—B°D.2B°—180°

3.在下列4个判断中:

1在同一平面内,不相交也不重合的两条线段一定平行;②在同一平面内,不相交也不重合的两条直线一定平行;③在同一平面内,不平行也不重合的两条线段一定相交;④在同一平面内,不平行也不重合的两条直线一定相交.正确判断的个数是()

A.4B.3C.2D.1

4.如图所示,下到说法错误的是()

A.ZA与/B是同旁内角B.Z1与/3是同位角

C.Z2与是/B同位角D.Z2与/3是内错角

5.已知:

如图所示,/仁/B,则下列说法正确的是()

 

A.AB与CD平行B.AC与DE平行

C.AB与CD平行,AC与DE也平行D.以上说法都不正确

6.

如图,直线I1//I2,/2=65°,/3=60°,则/1为()

36°

PGLCD

7.

如图,AB//CD直线EF分别与直线AB和直线CD相交于点P和点

C.画出A、B两点的中点D.画出A、B两点的距离

9.如图,已知/1=30°,下列结论正确的有()

1若/2=30°,则AB//CD

2若/5=30°,则AB//CD

3若/3=150°,贝UAB//CD

4若/4=150°,贝UAB//CD

 

A.1个B.2个C.3个D.4个

10.

C.70

D.110°

A.30°B.40

如图,AB//CDAB与EC交于点F,如果EA=EF,/C=11O,那么/E等于

 

.填空题(共8小题)

11.观察如图图形,并阅读图形下面的相关文字.像这样的十条直线相交最多

的交点个数有

两直线相交,三条直鮭相交叢

最勢1个交点.多有36交点

12.如图,设P是直线I夕卜的一点,取细线一根,一端用图钉固定在P点,将

细线拉直使它与I垂直,在垂足O处作一标志,然后拉紧细线左右旋转至PA

PB等位置,比较PQPAPB的长度,你从实验中得到的结论是.

P

//\\

I.八、

9占O\^A

13.如图,能与/a构成同旁内角的有对.

14.如图,直线MNPQ交于点O,OELPQ于O,OC平分/MOF若/MOE=4°,贝U/NOE=,/NOF=,/PON=.

15.如图,过直线AB外一点O,画射线OMONOPOF,分别交AB于点M,N,

P,F,其中ON!

AB于点N,则能表示点O到直线AB的距离的是线段的

长度.

O

AMi

16.如图,AB//CBEFLCD于F,/1=40°,则/2=

B

c

Z3

/

'F

17.如图,AB//DE若/B=30°,/D=140,则/C的大小是

/2=35°,

EF与GM的位置关系

/1=35°

是,AB与CD的位置关系是

EF丄AB,Z仁/2,求证:

CDLAB.

三.解答题(共4小题)

20.如图,已知/仁/2,/MAE=45,/FEG=15,/NCE=75,EG平分/AEC

求证:

AB//EF//CD

4B/

E

7

C/D

21.如图,已知:

OE平分/AODAB//CD,OFLOE于O,/D=50,求/BOF的

度数.

22.如图1,AB//CDEOF是直线ABCD间的一条折线.

(1)说明:

/ONBEOyDFO

(2)如果将折一次改为折二次,如图2,则/BEO/OZP、/PFC会满足怎样的关系,证明你的结论.

(3)若将折线继续折下去,折三次,折四次…折n次,又会得到怎样的结论?

请写出你的结论.

 

则/FOD勺度数为()

2017年08月15日sun****chun的初中数学组卷

参考答案与试题解析

一•选择题(共10小题)

1.如图,三条直线ABCDEF相交于点O,若/A0D=2FOD/AOE=120,

3/、

A.30°B.40°C.50°D.60°

【分析】首先,根据邻补角的性质求得/AOF=60;然后由已知条件“/AOD=3

/FOD来求/FOD的度数.

【解答】解:

如图,•••/AOE#AOF=180,/AOE=120,

•••/AOF=60.

又•••/AOD=ZFOD/AOF#FODMAOD

•••60°+ZFOD=2FOD

•••/FOD=30,

故选:

A.

【点评】本题考查了对顶角、邻补角,角的计算.解题时,要注意数形结合.

2.如图,已知AOLOBCOLDO/BOC节°,则/AOD的度数为()

E0B

A.B°—90°B.2B°—90°C.180°—B°D.2B°—180°

【分析】首先根据垂直定义可得/COD=9°,/AOB=90,再根据同角的余角相等可得/BODMAOC再由条件/BOC节,可表示出/BODMAOC的度数,进

而得到答案.

【解答】解:

TACLBECOLDO

:

丄COD=9°,/AOB=90,

即:

/AOD#BODMAOD#AOC=90,

•••/BODMAOC

vZBOC节°,

•••/BODZAOC=(B-90)°,

•••ZAOD=90-B°+90°=180°-B°.

故选:

C.

【点评】此题主要考查了余角和补角,关键是掌握余角:

如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:

如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.

3.在下列4个判断中:

1在同一平面内,不相交也不重合的两条线段一定平行;②在同一平面内,不相交也不重合的两条直线一定平行;③在同一平面内,不平行也不重合的两条线段一定相交;④在同一平面内,不平行也不重合的两条直线一定相交.正确判断的个数是()

A.4B.3C.2D.1

【分析】根据平面内两条直线的三种位置关系:

平行或相交或重合进行判断.

【解答】解:

在同一平面内,不相交也不重合的两条直线一定平行,故①错误,

2正确;

在同一平面内,不平行也不重合的两条直线一定相交故,③错误,④正确.

故正确判断的个数是2.

故选C.

【点评】本题考查了平行线和相交的定义.

同一平面内,两条直线的位置关系:

平行或相交或重合,对于这一知识的理解过程中要注意:

①前提是在同一平面内;②对于线段或射线来说,指的是它们所在的直线.

4•如图所示,下到说法错误的是()

A.ZA与/B是同旁内角B.Z1与/3是同位角

C.Z2与是/B同位角D•/2与/3是内错角

【分析】根据同旁内角、同位角、内错角的意义,可得答案.

【解答】解:

由图可知:

/1与/3是内错角,故B说法错误,

故选:

B.

【点评】本题考查了同旁内角、同位角、内错角,根据同位角、内错角、同旁内角的意义,可得答案.

5.已知:

如图所示,/仁/B,则下列说法正确的是()

A.AB与CD平行B.AC与DE平行

C.AB与CD平行,AC与DE也平行D.以上说法都不正确

【分析】/1与/B是直线ABCD被直线BE所截形成的同位角,所以能得出AB与CD平行.

【解答】解:

I/仁/B,aAB//CD(同位角相等,两直线平行).故选A.

【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.

6.

D.50

C.55

(2015?

瑶海区三模)如图,直线li//I2,/2=65°,/3=60°,则/1为()

【分析】先根据平行线的性质求出/6,再根据三角形内角和定理即可求出/4

的度数,由对顶角的性质可得/1.

【解答】解:

如图所示:

I1//I2,/2=65°,

•••/6=65°,

vZ3=60°,

在厶ABC中,

Z3=60°,Z6=65°

•••Z4=180°-60°-65°=55,

.•.Z1=Z4=55°

故选C.

【点评】本题重点考查了平行线的性质、对顶角相等及三角形内角和定理,是一道较为简单的题目.

7.(2015?

重庆模拟)如图,AB//CD直线EF分别与直线AB和直线CD相交于点P和点Q,PGLCD于G若ZAPE=48,则ZQPG勺度数为()

【分析】求出/PGC=90,根据平行线的性质求出/APG=90,即可求出答案.

【解答】解:

PGLCD

•••/PGC=90,

•••AB//CD

•••/AP(=180°-ZPGC=90,

vZAPE=48,

•••/QPG=180-90o-48°=42°,

故选A.

【点评】本题考查了邻补角,垂直定义,平行线的性质的应用,注意:

两直线平行,同旁内角互补.

8.(2014秋?

海陵区校级月考)下列画图语句中正确的是()

A、画射线OP=5cmB.画射线OA的反向延长线

C.画出A、B两点的中点D.画出A、B两点的距离

【分析】禾U用射线的定义,线段中点及距离的定义判定即可.

【解答】解:

A、画射线OP=5cm错误,射线没有长度,

B、画射线OA的反向延长线,正确.

C、画出A、B两点的中点,错误,中点是线段的不是两点的,

D画出A、B两点的距离,错误,画出的是线段不是距离.

故选:

B.

【点评】本题主要考查了射线及线段的中点,距离,解题的关键是熟记射线的定义,线段中点及距离的定义.

9.如图,已知Z1=30°,下列结论正确的有(第12页(共23页)

1若/2=30°,则AB//CD

2若/5=30°,则AB//CD

3若/3=150°,贝UAB//CD

A.1个B.2个C.3个D.4个

【分析】根据/1=30°求出/3=72=150°,推出/2=Z4,Z3=74,根据平行线的判定推出即可.

【解答】解:

T7仁30°,二72=150°,二①错误;

•••74=150°,

•••72=74,

•••AB//CD(同位角相等,两直线平行),•④正确;

•71=30°,

•73=150°,

•75=30°,

•74=150°,

•73=74,

•AB//CD(内错角相等,两直线平行),•②正确;

根据71=30°,73=150°不能推出AB//CD•③错误;

即正确的个数是2个,故选B.

【点评】本题考查了平行线的判定的应用,注意:

平行线的判定定理有:

①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.

10.

(2015?

阜新二模)女口图,AB//CDAB与EC交于点F,如果EA=EF,ZC=11O,

【分析】先根据平行线的性质求出ZBFC的度数,再由对顶角的性质求出ZAFE的度数,根据EA=EF可得出ZA的度数,由三角形内角和定理即可得出结论.

【解答】解:

AB//CDZC=110,

•••ZBFC=180-110°=70°•••ZBFC与ZAFE是对顶角,

•ZAFE=70.

•EA=EF

•ZA=ZAFE=70,

•ZE=180°-ZA-ZAFE=180-70°-70°=40°.

故选B.

【点评】本题考查的是平行线的性质,用到的知识点为:

两直线平行,同旁内角互补.

二.填空题(共8小题)

11.

四条直妹相交蛊多有6个交点.

的交点个数有

观察如图图形,并阅读图形下面的相关文字.像这样的十条直线相交最多

两直线相交,三条直娃相交最

最多1个交点.多有36交点

【分析】根据直线两两相交且不交于同一点,可得答案.

I解答】解:

十条直线相交最多的交点个数有=45,

故答案为:

45.

【点评】本题考查了相交线,n每条直线都与其它直线有一个交点,可有(n-1)个交点,n条直线用n(n-1)个交点,每个交点都重复了一次,n条直线最多有血』个交点.

2

12•如图,设P是直线I夕卜的一点,取细线一根,一端用图钉固定在P点,将细线拉直使它与I垂直,在垂足O处作一标志,然后拉紧细线左右旋转至PAPB等位置,比较PQPAPB的长度,你从实验中得到的结论是垂线段最短.

P

//\\

I.八、

9占0、+A

【分析】根据垂线段的性质:

垂线段最短进行解答即可.

【解答】解:

由题意得:

PA>PB>PQ由此可得:

垂线段最短,故答案为:

垂线段最短.

【点评】此题主要考查了垂线段的性质.

2对.

【分析】根据同旁内角的定义结合图形找出/a的同旁内角,即可得出答案.

解:

能与/a构成同旁内角的角有/1,72,共2对,故答案为:

2.

【点评】本题考查了同旁内角的应用,注意:

两条直线被第三条直线所截,如果有两个角在第三条直线的同旁,并且在两条直线之间,那么这两个角叫同旁内角.

14.如图,直线MNPQ交于点O,OELPQ于0,0C平分7MOF若7M0E=4°,贝卩7N0E=135°,7N0F=90°,7P0N=45°.

【分析】首先根据垂直的定义,即可求得7M0的度数,根据对顶角相等求得7

P0N的度数,然后根据7N0E7E0P7P0N7N0F=180-7P0N-7Q0F即可求解.

【解答】解:

0ELPQ于0,

•••7E0Q7E0P=90,

又v7M0E=4°,

•7M0Q=9O-45°=45°,则7Q0F7M0Q=45,

•7P0N7N0Q=4°,7N0E7E0P7P0N=9O+45°=135°,

7N0F=18O-7P0N-7Q0F=18O-45°-45°=90°.

故答案是:

135°;90°;45°.

【点评】本题考查了角度的计算,以及对顶角相等,理解垂直的定义,以及图形中角之间的关系是关键.

15•如图,过直线AB外一点0,画射线0MONOROF分别交AB于点MN,

P,F,其中ONLAB于点N,则能表示点0到直线AB的距离的是线段ON的长度.

【分析】根据点到直线的距离是直线外的点到这条直线的垂足间的线段长,可得答案.

【解答】解:

过直线AB外一点O,画射线OMON,OROF分别交AB于点M,N,P,F,其中ONLAB于点N,则能表示点O到直线AB的距离的是线段ON的长度.

故答案为:

ON

【点评】本题考查了点到直线的距离,利用了点到直线的距离的定义.

16.(2014?

重庆模拟)如图,AB//CBEF丄CD于F,/1=40°,则/2=50°.

【分析】由平行线的性质推知/仁/3=40。

,然后根据“直角三角形的两个锐角互余”来求/2的度数.

【解答】解:

如图,vAB//CB

.•./仁/3=40°.

又vEF丄CD

•••/EFC=90,

•••/2=90°-/3=50°.

故答案是:

50°.

17.(2014?

碑林区校级模拟)如图,AB//DE若/B=30,ZD=140,则/C

【分析】过C作CF//AB,根据平行线的性质可得到/BCF和/DCF可求得答案.

【解答】解:

如图,过C作CF//AB,

•••AB//DE

•••CF//DE

•••/BCF玄B=30°,/DCF#D=180,

•••/DCF=180-ZD=180-140°=40°,

•••/BCDZBCF+ZDCF=30+40°=70°,

【点评】本题主要考查平行线的性质,掌握两直线平行,内错角相等、同旁内角互补是解题的关键.

18.如图,已知EF丄EGGMLGEZ1=35°,Z2=35°,EF与GM的位置关系是EF//GM,AB与CD的位置关系是AB//CD.

【分析】根据垂直的定义以及同位角相等两直线平行得出即可.

【解答】解:

TEF丄EGGMLGE

•••EF//GM

•••EFLEGGMLGE/仁35°,/2=35°,

•••/AEGMCGN

•••AB//CD

故答案为:

EF//GMAB//CD

【点评】此题主要考查了垂直的定义以及平行线的判定,根据同位角相等两直

线平行得出是解题关键.

三•解答题(共4小题)

19.(2017春?

自贡期末)已知:

如图,DGLBC,ACLBC,EFLAB,/仁/2,求

【分析】由已知条件结合图形再灵活运用垂直的定义,注意由垂直可得90。

角,由90°角可得垂直,结合平行线的判定和性质,只要证得/ADC=90,即可得CDLAB.

【解答】证明:

DGLBC,ACLBC

•••DG/AC,

•••/2=Z3,

vZ1=Z2,

•••/仁/3,

•••EF//DC

•••/AEFKADC

•••EF±AB,

•••/AEF=90,

•••/ADC=90,

•••DCLAB.

【点评】利用垂直的定义除了由垂直得直角外,还能由直角判定垂直,判断两

直线的夹角是否为90°是判断两直线是否垂直的基本方法.

20.如图,已知/仁/2,/MAE=45,/FEG=15,/NCE=75,EG平分/AEC求证:

AB//EF/CD

JBf

E

7

C/D

【分析】首先根据平行线的判定得出AB//EF,进而利用已知角度之间的关系得出/FEC=/ECN进而得出EF/CD,即可得出答案.

【解答】证明:

V/仁/2,

•••AB//EF(同位角相等,两直线平行),

•••/MAE/AEF=45,

v/FEG=15,

•••/AEG=60,

•••/GEC=60,

•••/FEC=/FEG/GEC=75,

v/NCE=75,

•••/FEC=/ECN

•••EF/CD

•••AB//EF//CD

【点评】此题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质得出/FECWECN是解题关键.

21.(2013春?

鼓楼区校级期中)如图,已知:

OE平分/AODAB//CDOFLOE于O,ZD=50,求/BOF的度数.

【分析】利用平行线的性质首先得出/D=ZDOB=50,即可得出/AOD的度数,再利用角平分线的性质得出/AOE的度数,最后利用邻补角关系求出/BOF的度数.

【解答】解:

AB//CD

•••/D=ZDOB=50,

•••/AOD=180-ZDOB=130,

•••OE平分ZAOD

•••ZAOE=_AOD=65,

vOFLOE于点O,

•ZEOF=90,

•ZBOF=180-ZEOF-ZAOE=25.

【点评】此题主要考查了角平分线的性质以及平行线的性质等知识,根据已知得出ZAOE的度数是解题关键.

22.(2013春?

滨江区校级期中)如图1,AB//CDEOF是直线ABCD间的一条折线.

(1)说明:

/ONBEOyDFO

(2)如果将折一次改为折二次,如图2,则/BEO/OZP、/PFC会满足怎样的关系,证明你的结论.

(3)若将折线继续折下去,折三次,折四次…折n次,又会得到怎样的结论?

请写出你的结论.

【分析】

(1)过O作OM/AB,根据平行线性质推出ZBEOZMOEZDFOZMOF相加即可求出答案;

(2)过0作OM/AB,PN//AB,根据平行线性质求出ZBEOZEOMZPFCZNPFZMOPZNPO代入求出即可;

(3)根据

(1)

(2)总结出规律,即可得出当折点是1,2,3,4,…,n时Z

BEOZ2+Z4+…二Z1+Z3+Z5+…+ZPFC

【解答】

(1)证明:

过O作OM/AB,

•••AB//CD

•••AB//OM/CD

•••ZBEOZMOEZDFOZMOF

•••ZBEOZDFOZEOMZFOM

即ZEOFZBEOZDFO

(2)ZBEO/O/P、ZPFC会满足的关系式是:

/BEOZP=ZO+ZPFC

解:

过O作OM/ABPN//AB

•••AB//CD

•••AB//OM/PN//CD,

•••/BEOMEOM/PFCKNPF/MOPMNPO

•••/EOP-ZOPF=(ZEOMt+MOP—(/OPN#NPF二/EOS/NPF

/BEO-/PFC=/EOI—/NPF

•••/BEO-/PFC/EOP-/OPF

•••/BEO/OPF/EOP-/PFC

(3)解:

令折点是1,2,3,4,…,n,

则:

/BEO/2+/4+…二/1+/3+/5+…+/PFC

【点评】本题考查了平行线的性质的应用,解此题的关键是正确作辅助线,并根据证出的结果得出规律,题目比较典型,但是有一定的难度.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 高考

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1