数学中国国际赛论文参考模版.docx
《数学中国国际赛论文参考模版.docx》由会员分享,可在线阅读,更多相关《数学中国国际赛论文参考模版.docx(12页珍藏版)》请在冰豆网上搜索。
数学中国国际赛论文参考模版
第三届“认证杯”数学中国
数学建模国际赛
承诺书
我们仔细阅读了第三届“认证杯”数学中国数学建模国际赛的竞赛规则。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们允许数学中国网站()公布论文,以供网友之间学习交流,数学中国网站以非商业目的的论文交流不需要提前取得我们的同意。
我们的参赛队号为:
1402
我们选择的题目是:
B
参赛队员(签名):
队员1:
队员2:
队员3:
参赛队教练员(签名):
无
第三届“认证杯”数学中国
数学建模国际赛
编号专用页
参赛队伍的参赛队号:
(请各个参赛队提前填写好):
1402
竞赛统一编号(由竞赛组委会送至评委团前编号):
竞赛评阅编号(由竞赛评委团评阅前进行编号):
TITLE
Abstract:
Keywords:
Contents
1.Introduction...................................................................................................................................................3
1.1Whydoestollwaycollectstoll?
………………………………………….…………………….3
1.2Tollmodes………………………………………………………………………………………………3
1.3Tollcollectionmethods……………………………………………………………………….……3
1.4Annoyanceintollplazas………………………………………….………….…………………….3
1.5Theoriginofthetollwayproblem……………………...……………………………………...3
1.6Queuingtheory…………………………………………………………………………………...…...4
2.TheDescriptionofProblem….............................................................................................................5
2.1Howdoweapproximatethewholecourseof?
............................................5
2.2Howdowedefinetheoptimalconfiguration?
........................…………….………….5
2.2.1Fromtheperspectiveof…………………………………….………………….5
2.2.2Fromtheperspectiveofthe…………………………………………………6
2.2.3Compromise…………………………………...……………………………………...………..6
2.3Overalloptimizationandlocaloptimization……………………………..……………….…6
2.4Thedifferencesinweightsandsizesof………………………………………..…7
2.5Whatifthereisnodataavailable?
..............................................................................................7
3.Models……………...........................................................................................................................................7
3.1BasicModel.............................................................................................................................................7
3.1.1SymbolsandDefinitions………………………………..…...……………………………...7
3.1.2Assumptions……………………………………………………………….……..……………..8
3.1.3TheFoundationofModel………………………………………………………………….9
3.1.4SolutionandResult……………………………………………………………….………...11
3.1.5AnalysisoftheResult……………………………………………….………………………..……….….11
3.1.6StrengthandWeakness………………………………………………….…………….…..13
3.2ImprovedModel.................................................................................................14
3.2.1ExtraSymbols……………………………………..………………………...…………………......................14
3.2.2AdditionalAssumptions………………………………………………...…..…………………………..14
3.2.3TheFoundationofModel………………………………..…………………………………………….14
3.2.4SolutionandResult………………………………………….……………………………..……………...15
3.2.5AnalysisoftheResult…………………………………………….……………………..…………….….18
3.2.6StrengthandWeakness……………………………………………….……………….…..19
4.Conclusions..................................................................................................................................................19
4.1Conclusionsoftheproblem……………………………………..……………..19
4.2Methodsusedinourmodels…………………………………...……………………..…………19
4.3Applicationofourmodels…………………………………………………..………………..….19
5.FutureWork..............................................................................................................................................19
5.1Anothermodel………………………………………………………………………………………19
5.2Anotherlayoutof………………………………………………………..……………23
5.3Thenewly-adoptedmethods………………………………………..……………23
6.References...................................................................................................................................................23
7.Appendix......................................................................................................................................................23
Programsandcodes………………………………………………………………..……………………24
I.Introduction
Inordertoindicatetheoriginofproblems,thefollowingbackgroundisworthmentioning.
1.1
1.2
1.3
1.4
1.5
1.6
II.TheDescriptionoftheProblem
2.1Howdoweapproximatethewholecourseof?
●
●
●
●
2.2Howdowedefinetheoptimalconfiguration?
1)Fromtheperspectiveof:
2)Fromtheperspectiveofthe:
3)Compromise:
2.3Thelocaloptimizationandtheoveralloptimization
●
●
●Virtually:
2.4Thedifferencesinweightsandsizesof
2.5Whatifthereisnodataavailable?
III.Models
3.1BasicModel
3.1.1Terms,DefinitionsandSymbols
Thesignsanddefinitionsaremostlygeneratedfromqueuingtheory.
●
●
●
●
●
3.1.2Assumptions
●
●
●
●
●
3.1.3TheFoundationofModel
1)Theutilityfunction
●Thecostof:
●Thelossof:
●Theweightofeachaspect:
●Compromise:
2)Theintegerprogramming
Accordingtotheory,wecancalculatethestatisticalpropertiesasfollows.
3)Theoveralloptimizationandthelocaloptimization
●Theoveralloptimization:
●Thelocaloptimization:
●Theoptimalnumberof:
3.1.4SolutionandResult
1)Thesolutionoftheintegerprogramming:
2)Results:
3.1.5AnalysisoftheResult
●Localoptimizationandoveralloptimization:
●Sensitivity:
Theresultisquitesensitivetothechangeofthethreeparameters
●Trend:
●Comparison:
3.1.6StrengthandWeakness
●Strength:
Indespiteofthis,themodelhasprovedthat.Moreover,wehavedrawnsomeusefulconclusionsabout.Themodelisfitfor,suchas
●Weakness:
Thismodeljustappliesto.Aswehavestated,.That’sjustwhatweshoulddointheimprovedmodel.
3.2ImprovedModel
3.2.1ExtraSymbols
Signsanddefinitionsindicatedabovearestillvalid.Herearesomeextrasignsanddefinitions.
●
●
●
●
3.2.2AdditionalAssumptions
●
●
●AssumptionsconcerningtheprocessarethesameastheBasicModel.
3.2.3TheFoundationofModel
1)Howdowedeterminetheoptimalnumber?
AswehaveconcludedfromtheBasicModel,
3.2.4SolutionandResult
1)Simulationalgorithm
Basedontheanalysisabove,wedesignoursimulationarithmeticasfollows.
●Step1:
●Step2:
●Step3:
●Step4:
●Step5:
●Step6:
●Step7:
●Step8:
●Step9:
2)Flowchart
Thefigurebelowistheflowchartofthesimulation.
3)Solution
3.2.5AnalysisoftheResult
3.2.6StrengthandWeakness
●Strength:
TheImprovedModelaimstomakeupfortheneglectof.TheresultseemstodeclarethatthismodelismorereasonablethantheBasicModelandmuchmoreeffectivethantheexistingdesign.
●Weakness:
.Thusthemodelisstillanapproximateonalargescale.Thishasdoomedtolimittheapplicationsofit.
IV.Conclusions
4.1Conclusionsoftheproblem
●
●
●
4.2Methodsusedinourmodels
●
●
●
4.3Applicationsofourmodels
●
●
●
V.FutureWork
5.1Anothermodel
5.1.1Thelimitationsofqueuingtheory
5.1.2
5.1.3
5.1.4
1)
●
●
●
●
2)
●
●
●
3)
●
●
●
4)
5.2Anotherlayoutof
5.3Thenewly-adoptedchargingmethods
VI.References
[1]
[2]
[3]
[4]
VII.Appendix