单片机上下限温度报警器设计.docx

上传人:b****7 文档编号:10308321 上传时间:2023-02-10 格式:DOCX 页数:27 大小:130.38KB
下载 相关 举报
单片机上下限温度报警器设计.docx_第1页
第1页 / 共27页
单片机上下限温度报警器设计.docx_第2页
第2页 / 共27页
单片机上下限温度报警器设计.docx_第3页
第3页 / 共27页
单片机上下限温度报警器设计.docx_第4页
第4页 / 共27页
单片机上下限温度报警器设计.docx_第5页
第5页 / 共27页
点击查看更多>>
下载资源
资源描述

单片机上下限温度报警器设计.docx

《单片机上下限温度报警器设计.docx》由会员分享,可在线阅读,更多相关《单片机上下限温度报警器设计.docx(27页珍藏版)》请在冰豆网上搜索。

单片机上下限温度报警器设计.docx

单片机上下限温度报警器设计

陕西理工学院

课程设计实验报告

 

课程:

单片机原理及应用

题目:

上下限温度报警器

学号:

姓名:

班级:

指导老师:

时间:

09.10.12-09.10.30

 

摘要

随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的药库温度报警系统,本温度报警系统可以设置报警温度,当温度不在设置范围内时,可以报警。

目录

前言··················································································································

1.方案论证

1.1.设计要求································································································5

1.2.设计方案论证·······························································································5

1.3.总体设计框图·······························································································6

2.系统组成及工作原理

2.1.DS18B20温度传感器与单片机接口电路····················································7

2.2.7断LED数码管电路及原理··············································································8

2.3.系统整体硬件电路·····················································································10

2.4.显示电路········································································································11

2.5开机复位电路································································································12

2.6.报警电路········································································································13

3.系统软件算法分析

3.1.主程序········································································································15

3.2.读出温度子程序·······························································································15

3.3温度转换命令字程序························································································

3.4计算温度子程序························································································

3.5显示子程序························································································

4.实验调试及测试结果分析······················································································18

5:

附录

6.1.整体电路图····································································································19

6.2.元器件清单····························································································20

前言

随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从单片机技术入手,一切向着数字化控制,智能化控制方向发展。

目前甲型H1N1流感肆虐,为了把好关需对流动人口进行体温检测由于温度传感器ds18b20具有独特的单线接口仅需要一个端口进行引脚通信可实现多点组网功能,0待机功耗,电压范围仅为3.0——5.5v而且具有读数方便测温范围广,测温准确的特点,最主要时可定义报警设置,报警搜索命令识别并标志超过程序先顶温度(温度报警条件),那么只要检测温度超过设定的正常人体温就会报警,这样就能更有效的防治流感扩散。

出于对此类问题的探索我们通过上网查询有关资料做了本设计。

本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该设计控制器使用单片机AT89S51,测温传感器使用DS18B20,用4位共阴极LED数码管实现温度显示,能准确达到以上要求。

2总体设计方案

2.1数字温度计设计方案论证

2.1.1方案一

由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。

2.1.2方案二

进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。

从以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。

2.2方案二的总体设计框图

温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用2位LED数码管以并口传送数据实现温度显示。

图1总体设计方框图

 

2.2.1主控制器

单片机AT89S51具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。

2.2.2显示电路

显示电路采用2位共阳LED数码管,从P1口输出待显示的数据。

2.2.3温度传感器

DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。

DS18B20的性能特点如下:

●独特的单线接口仅需要一个端口引脚进行通信;

●多个DS18B20可以并联在惟一的三线上,实现多点组网功能;

●无须外部器件;

●可通过数据线供电,电压范围为3.0~5.5V;

●零待机功耗;

●温度以9或12位数字;

●用户可定义报警设置;

●报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;

●负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作;

DS18B20采用3脚PR-35封装或8脚SOIC封装,其内部结构框图如图2所示。

图2DS18B20内部结构框图

64位ROM的结构开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用一线进行通信的原因。

温度报警触发器TH和TL,可通过软件写入户报警上下限。

DS18B20温度传感器的内部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的EERAM。

高速暂存RAM的结构为8字节的存储器,结构如图3所示。

头2个字节包含测得的温度信息,第3和第4字节TH和TL的拷贝,是易失的,每次上电复位时被刷新。

第5个字节,为配置寄存器,它的内容用于确定温度值的数字转换分辨率。

DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值。

该字节各位的定义如图3所示。

低5位一直为1,TM是工作模式位,用于设置DS18B20在工作模式还是在测试模式,DS18B20出厂时该位被设置为0,用户要去改动,R1和R0决定温度转换的精度位数,来设置分辨率。

由表1可见,DS18B20温度转换的时间比较长,而且分辨率越高,所需要的温度数据转换时间越长。

因此,在实际应用中要将分辨率和转换时间权衡考虑。

高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。

第9字节读出前面所有8字节的CRC码,可用来检验数据,从而保证通信数据的正确性。

当DS18B20接收到温度转换命令后,开始启动转换。

转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1、2字节。

单片机可以通过单线接口读出该数据,读数据时低位在先,高位在后,数据格式以0.0625℃/LSB形式表示。

当符号位S=0时,表示测得的温度值为正值,可以直接将二进制位转换为十进制;当符号位S=1时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制数值。

表2是一部分温度值对应的二进制温度数据。

DS18B20完成温度转换后,就把测得的温度值与RAM中的TH、TL字节内容作比较。

若T>TH或T<TL,则将该器件内的报警标志位置位,并对主机发出的报警搜索命令作出响应。

因此,可用多只DS18B20同时测量温度并进行报警搜索。

在64位ROM的最高有效字节中存储有循环冗余检验码(CRC)。

主机ROM的前56位来计算CRC值,并和存入DS18B20的CRC值作比较,以判断主机收到的ROM数据是否正确。

DS18B20的测温原理是这这样的,器件中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1;高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入。

器件中还有一个计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲进行计数进而完成温度测量。

计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55℃所对应的一个基数分别置入减法计数器1、温度寄存器中,计数器1和温度寄存器被预置在-55℃所对应的一个基数值。

减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时,温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器计数到0时,停止温度寄存器的累加,此时温度寄存器中的数值就是所测温度值。

其输出用于修正减法计数器的预置值,只要计数器门仍未关闭就重复上述过程,直到温度寄存器值大致被测温度值。

2.2.4AT24C02串行E2PROM

I2C总线是一种用于IC器件之间连接的二线制总线。

它通过SDA(串行数据线)及SCL(串行时钟线)两根线在连到总线上的器件之间传送信息,并根据地址识别每个器件:

不管是单片机、存储器、LCD驱动器还是键盘接口。

  1.I2C总线的基本结构 

采用I2C总线标准的单片机或IC器件,其内部不仅有I2C接口电路,而且将内部各单元电路按功能划分为若干相对独立的模块,通过软件寻址实现片选,减少了器件片选线的连接。

CPU不仅能通过指令将某个功能单元电路挂靠或摘离总线,还可对该单元的工作状况进行检测,从而实现对硬件系统的既简单又灵活的扩展与控制。

I2C总线接口电路结构如图4所示。

图4I2C总线接口电路结构

  2.双向传输的接口特性 传统的单片机串行接口的发送和接收一般都各用一条线,如MCS51系列的TXD和RXD,而I2C总线则根据器件的功能通过软件程序使其可工作于发送或接收方式。

当某个器件向总线上发送信息时,它就是发送器(也叫主器件),而当其从总线上接收信息时,又成为接收器(也叫从器件)。

主器件用于启动总线上传送数据并产生时钟以开放传送的器件,此时任何被寻址的器件均被认为是从器件。

I2C总线的控制完全由挂接在总线上的主器件送出的地址和数据决定。

在总线上,既没有中心机,也没有优先机。

  总线上主和从(即发送和接收)的关系不是一成不变的,而是取决于此时数据传送的方向。

SDA和SCL均为双向I/O线,通过上拉电阻接正电源。

当总线空闲时,两根线都是高电平。

连接总线的器件的输出级必须是集电极或漏极开路,以具有线“与”功能。

I2C总线的数据传送速率在标准工作方式下为100kbit/s,在快速方式下,最高传送速率可达400kbit/s。

  3.I2C总线上的时钟信号 在I2C总线上传送信息时的时钟同步信号是由挂接在SCL时钟线上的所有器件的逻辑“与”完成的。

SCL线上由高电平到低电平的跳变将影响到这些器件,一旦某个器件的时钟信号下跳为低电平,将使SCL线一直保持低电平,使SCL线上的所有器件开始低电平期。

此时,低电平周期短的器件的时钟由低至高的跳变并不能影响SCL线的状态,于是这些器件将进入高电平等待的状态。

  当所有器件的时钟信号都上跳为高电平时,低电平期结束,SCL线被释放返回高电平,即所有的器件都同时开始它们的高电平期。

其后,第一个结束高电平期的器件又将SCL线拉成低电平。

这样就在SCL线上产生一个同步时钟。

可见,时钟低电平时间由时钟低电平期最长的器件确定,而时钟高电平时间由时钟高电平期最短的器件确定。

  4.数据的传送 在数据传送过程中,必须确认数据传送的开始和结束。

在I2C总线技术规范中,开始和结束信号(也称启动和停止信号)的定义如图5所示。

当时钟线SCL为高电平时,数据线SDA由高电平跳变为低电平定义为“开始”信号;当SCL线为高电平时,SDA线发生低电平到高电平的跳变为“结束”信号。

开始和结束信号都是由主器件产生。

在开始信号以后,总线即被认为处于忙状态;在结束信号以后的一段时间内,总线被认为是空闲的。

图5开始和结束信号

  I2C总线的数据传送格式是:

在I2C总线开始信号后,送出的第一个字节数据是用来选择从器件地址的,其中前7位为地址码,第8位为方向位(R/W)。

方向位为“0”表示发送,即主器件把信息写到所选择的从器件;方向位为“1”表示主器件将从从器件读信息。

开始信号后,系统中的各个器件将自己的地址和主器件送到总线上的地址进行比较,如果与主器件发送到总线上的地址一致,则该器件即为被主器件寻址的器件,其接收信息还是发送信息则由第8位(R/W)确定。

  在I2C总线上每次传送的数据字节数不限,但每一个字节必须为8位,而且每个传送的字节后面必须跟一个认可位(第9位),也叫应答位(ACK)。

数据的传送过程如图6所示。

每次都是先传最高位,通常从器件在接收到每个字节后都会作出响应,即释放SCL线返回高电平,准备接收下一个数据字节,主器件可继续传送。

如果从器件正在处理一个实时事件而不能接收数据时,(例如正在处理一个内部中断,在这个中断处理完之前就不能接收I2C总线上的数据字节)可以使时钟SCL线保持低电平,从器件必须使SDA保持高电平,此时主器件产生1个结束信号,使传送异常结束,迫使主器件处于等待状态。

当从器件处理完毕时将释放SCL线,主器件继续传送。

图6数据的传送

  当主器件发送完一个字节的数据后,接着发出对应于SCL线上的一个时钟(ACK)认可位,在此时钟内主器件释放SDA线,一个字节传送结束,而从器件的响应信号将SDA线拉成低电平,使SDA在该时钟的高电平期间为稳定的低电平。

从器件的响应信号结束后,SDA线返回高电平,进入下一个传送周期。

  I2C总线还具有广播呼叫地址用于寻址总线上所有器件的功能。

若一个器件不需要广播呼叫寻址中所提供的任何数据,则可以忽略该地址不作响应。

如果该器件需要广播呼叫寻址中提供的数据,则应对地址作出响应,其表现为一个接收器。

  5.总线竞争的仲裁 总线上可能挂接有多个器件,有时会发生两个或多个主器件同时想占用总线的情况。

例如,多单片机系统中,可能在某一时刻有两个单片机要同时向总线发送数据,这种情况叫做总线竞争。

I2C总线具有多主控能力,可以对发生在SDA线上的总线竞争进行仲裁,其仲裁原则是这样的:

当多个主器件同时想占用总线时,如果某个主器件发送高电平,而另一个主器件发送低电平,则发送电平与此时SDA总线电平不符的那个器件将自动关闭其输出级。

总线竞争的仲裁是在两个层次上进行的。

首先是地址位的比较,如果主器件寻址同一个从器件,则进入数据位的比较,从而确保了竞争仲裁的可靠性。

由于是利用I2C总线上的信息进行仲裁,因此不会造成信息的丢失。

  6.I2C总线接口器件 目前在视频处理、移动通信等领域采用I2C总线接口器件已经比较普遍。

另外,通用的I2C总线接口器件,如带I2C总线的单片机、RAM、ROM、A/D、D/A、LCD驱动器等器件,也越来越多地应用于计算机及自动控制系统中。

   AT24C02是美国ATMEL公司的低功耗CMOS串行EEPROM,它是内含256×8位存储空间,具有工作电压宽(2.5~5.5V)、擦写次数多(大于10000次)、写入速度快(小于10ms)等特点。

2.3DS18B20温度传感器与单片机的接口电路

DS18B20可以采用两种方式供电,一种是采用电源供电方式,此时DS18B20的1脚接地,2脚作为信号线,3脚接电源。

另一种是寄生电源供电方式,单片机端口接单线总线,为保证在有效的DS18B20时钟周期内提供足够的电流,可用一个MOSFET管来完成对总线的上拉。

当DS18B20处于写存储器操作和温度A/D转换操作时,总线上必须有强的上拉,上拉开启时间最大为10us。

采用寄生电源供电方式时VDD端接地。

由于单线制只有一根线,因此发送接口必须是三态的。

2.4系统整体硬件电路

2.4.1主板电路

系统整体硬件电路包括:

传感器数据采集电路,温度显示电路,报警调整电路,单片机主板电路等,如图7所示。

图7中有2个独立式按键可以分别调整温度计的报警温度设置,图中LED可以在被测温度不在上下限范围内时,发出闪烁,同时LED数码管将没有被测温度值显示,这时可以调整报警上限,从而测出被测的温度值。

 图7中的按健复位电路是上电复位加手动复位,使用比较方便,在程序跑飞时,可以手动复位,这样就不用在重起单片机电源,就可以实现复位。

2.4.2显示电路

 显示电路是使用的并口显示,这种显示最大的优点就是使用简单,只用P1口。

图7原理图

3系统软件算法分析

系统程序主要包括主程序,读出温度子程序,温度转换命令子程序,计算温度子程序,显示数据刷新子程序等。

3.1主程序

主程序的主要功能是负责温度的实时显示、读出并处理DS18B20的测量的当前温度值,温度测量每1s进行一次。

这样可以在一秒之内测量一次被测温度,其程序流程见图8所示。

图8程序流程图

3.2读出温度子程序

读出温度子程序的主要功能是读出RAM中的9字节,在读出时需进行CRC校验,校验有错时不进行温度数据的改写。

其程序流程图如图9所示

3.3温度转换命令子程序

温度转换命令子程序主要是发温度转换开始命令,当采用12位分辨率时转换时间约为750ms,在本程序设计中采用1s显示程序延时法等待转换的完成。

温度转换命令子程序流程图如上图,图9所示

3.4计算温度子程序

计算温度子程序将RAM中读取值进行BCD码的转换运算,并进行温度值正负的判定,其程序流程图如图10所示。

参考文献:

[1] 李朝青.单片机原理及接口技术(简明修订版).杭州:

北京航空航天大学出版社,1998

[2] 李广弟.单片机基础[M].北京:

北京航空航天大学出版社,1994

[3] 阎石.数字电子技术基础(第三版).北京:

高等教育出版社,1989

[4] 廖常初.现场总线概述[J].电工技术,1999.

附1:

原理图及PCB板图

附2:

程序

ORG0000H

LJMPSTART

ORG0003H

LJMPJIA

ORG0013H

LJMPJIAN

ORG0030H

FLAG1BITF0;DS18B20存在标志位

DQBITP2.2

TEMPER_LEQU29H

TEMPER_HEQU28H

A_BITEQU35H

B_BITEQU36H

START:

MOVIE,#85H

MOV30H,#30

shezhi:

MOVR1,#30H

acalldisplay

MOVP2,#0FFH

mova,p2

movc,acc.0

jncshezhi

ljmpmain

DISPLAY:

MOVA,@R1;将29H中的十六进制数转换成10进制

MOVB,#10;10进制/10=10进制

DIVAB

MOVB_BIT,A;十位在A

MOVA_BIT,B;个位在B

MOVDPTR,#tab;指定查表启始地址

SETBP3.7;选中第一个数码管

MOVA,A_BIT;取个位数

MOVCA,@A+DPTR;查个位数的7段代码

MOVP1,A;送出个位的7段代码

LCALLDELAY;调用延时

CLRP3.7

SETBP3.6;选中第二个数码管

MOVA,B_BIT;取十位数

MOVCA,@A+DPTR;查十位数的7段代码

MOVP1,A;送出十位的7段代码

LCALLDELAY

CLRP3.6

RET

JIA:

MOVP2,#0FFH

mova,p2

movc,acc.0

jcout

INC@R1

LCALLDELAY

LCALLDELAY

LCALLDELAY

LCALLDELAY

LCALLDELAY

LCALLDELAY

LCALLDELAY

LCALLDELAY

LCALLDELAY

out:

RETI

JIAN:

MOVP2,#0FFH

mova,p2

movc,acc.0

jcout1

DEC@R1

LCALLDELAY

LCALLDELAY

LCALLDELAY

LCALLDELAY

LCALLDELAY

LCALLDELAY

LCALLDELAY

LCALLDELAY

LC

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 商务科技

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1