Artificial Intelligence and ComputerAssisted Language Instruction.docx
《Artificial Intelligence and ComputerAssisted Language Instruction.docx》由会员分享,可在线阅读,更多相关《Artificial Intelligence and ComputerAssisted Language Instruction.docx(17页珍藏版)》请在冰豆网上搜索。
ArtificialIntelligenceandComputerAssistedLanguageInstruction
ArtificialIntelligenceandComputer-AssistedLanguageInstruction:
APerspective
AlanBailin
UniversityofWesternOntario
Abstract:
ThearticleattemptstooutlinethemajorcomponentsofCALI-AI(computer-assistedlanguageinstructionincorporatingartificialintelligencetechniques).ThearticlebeginsbydiscussingbrieflythecentralassumptiononwhichCALI-AIworkisbased,thatis,thathumancognitiveabilitiescanbereproducedbymechanicalmeans.ItthenproceedstoexaminethefollowingcomponentsofCALI-AI:
(1)naturallanguageprocessing,problemsolving,(3)languagelearning,and(4)modelingteacherbehavior.Thearticleconcludeswithadiscussionofthewaysinwhichlanguageteacherscanparticipateinthedevelopmentofthefield.
KEYWORDS:
artificialintelligence,computer-assistedlanguageinstruction,naturallanguageprocessing,languageteaching.
Introduction
ThisarticleattemptstooutlinethemajorcomponentsofCALI-Al(computer-assistedlanguageinstructionincorporatingartificialintelligencetechniques!
)fromtheperspectiveofhowthesecomponentsareusedatpresentandhowtheymightbeusedinthefuture.Insodoing,ittriestoshowthatCALI-AIhasfeaturesthatdistinguishitfromotherAIapplicationsandthatcanallowittomakeitsowndistinctcontributionsbothtoCALIandtoAI.
ThearticlebeginsbydiscussingbrieflythecentralassumptiononwhichCALI-AIworkisbased,thatis,thathumancognitiveabilitiescanbereproducedbymechanicalmeans.ItthenproceedstoexaminethefollowingcomponentsofCALI-AI:
(1)naturallanguageprocessing,
(2)problemsolving,(3)languagelearning,and(4)modelingteacherbehavior.Thearticleendswithadiscussionofthewaysinwhichlanguageteacherscanparticipateinthedevelopmentofthefield.
HumanCognitionandComputability
TheultimategoalofCALI-AIistomodelinarobustwaythecognitivebehaviorofhumansinaparticularsocialrole:
thatoflanguageteacher.Atleast
25
inthisregard,CALI-AIisnotsimplyanattemptatsophisticatedprogramming.Itis,aboveall,anattempttoachieveatrueAIgoal:
thereplicationbymachineofsignificantaspectsofhumancognitiveabilities.Totestwhetherornotamachinecouldreplicatehumancognitivebehavior,AlanTuringsuggestedthatahumanshouldinteractwithitwithoutanyknowledgeaboutwhetherornots/hewastalkingtoamachine.Ifthehumanbelieveds/hewastalkingtoanotherhuman,themachinecouldbeconsidered"truly"intelligent.ThistestisknownastheTuringTest.
ThetestwouldhavenovalidityinrelationtomanyAIsystemsdesignedforpurelymilitaryorindustrialpurposesbecausethesesystemsdonotreallyaimatsimulatinghumanbehavior.Rather,theyareintendedsimplytoaidinthemakingofpurelytechnicaldecisions(thecorrectmixtureofingredientsinaSoupmix,orthecorrecttechnicalresponsetoincomingmissiles—seeBuchnanan1985forexamples).Ontheotherhand,ifCALI-AIultimatelydoesachieveitsgoal,itshouldbeabletopasstheTuringtest,becauseitwillhavesuccessfullyreplicatedasignificantaspectofhumanbehavior—thatofalanguageteacher.Atrulysuccessfulsystemwouldbehaveinwaysindistinguishablefromthatofahumanperformingthesameteachingfunction.
Wearefarfromachievingthisgoal.CurrentCALI-AIprojectscannotand,intheauthor'sopinion,shouldnotbeusedinplaceofateacher.TheyaretrulyapartofCAI—computer-assistedinstruction.Nevertheless,evenatthisstage,agreatdealofwhatateacherdoescanbereplicatedbymachine.CALI-AIcancheckthesyntaxofastudent'swrittenwork,createenvironmentsinwhichstudentsuselanguageinpedagogicallybeneficialways,andprovidesophisticatedfeedbacktostudentsengagedindrill-and-practiceexercises.
UnderlyingbothCALT-AI'ssmallbutsignificantactualcontributionsanditspotentialcontributionsisthequestionofwhataspectsofhumancognitivebehavioracomputercanreplicate.Inthemostgeneralterms,theansweristhatamachinecanreplicateanyaspectofhumanbehaviorwhichcanberepresentedorsimulatedbycomputationalmeans.Itmustbestressedthat"computational"heredoesnotreallymeaninvolvingnumbers(notatleastinanarithmeticsense).Rather,itreferstoanythingwhichcanbedescribedintermsofa"Turingmachine,"
ATuringmachineisnota"real"machine,butratheranautomaton,thatis,anidealizedabstractmodelofamachine.itisspecificallyintendednotfornumericaloperations(althoughitcanbeusedtocomputethem),butratherforthegeneralmanipulationofsymbols.ATuringmachine(seefigure1)consistsof
26
(1)afinitenumberofstates,
(2)atapeofinfinitelength,(3)afinitenumberoftapesymbols(includingtheblank(B)symbol),and(4)atapehead.Eachtapecellcontainsonlyonetapesymbol,andthetapeheadscansonlyonecellatatime.Themachinecanperformthefollowingkindsofoperations:
(1)itcaneraseatapesymbolonthecellwhichthetapeheadisscanningandreplaceitwithanon-blanktapesymbol,
(2)itcanmovethetapeheadonecelltoeithertheleftorright,(3)itcanchange4)itcan"halt"(thatis,stop)completely(HopcraftandUllman1969,80ffandPartee1978,162ff).
Figure1:
TheTuringMachine
ThebasicassumptionofAIingeneral,andCALI-AIinparticular,isthathumancognition—oratleastasignificantportionofit—canbereplicatedbymeansoftheploddingstep-by-stepmovesofaTuringmachine.UnderlyingCALI-AIthenisnotsomemagician'shocus-pocus,butratherthecareful,preciseanalysisofwhatlanguageteachinginvolves.Whetherornotthebasicassumptionprovestenable,theattempttodevelopCALI-AIshouldleadustoabetterunderstandingofwhatitmeanstoteach.AsweexaminethecomponentsofCALI-AI,thisshouldbekeptinmind.
NaturalLanguageProcessing
Thefieldofnaturallanguageprocessingcanbedividedintothefollowingareas:
syntax,semantic/pragmatics,morphology,speechprocessing,andlanguagegeneration.Below,eachwillbeexaminedinturn,
Syntax
Thetwobasicareasinwhichsyntaxisimportantinnaturallanguageprocessingareparsingandlanguagegeneration.Thissectionconcernsonly
27
parsingbecause,unlikelanguagegeneration,itisanareaofapplicationwherethesyntaxoperatestoalargedegreeindependentlyofothernaturallanguageprocessingcomponents(semantics,morphology,etc.).
Theconsiderableworkthathasbeendoneinnaturallanguageprocessinghasledtoavarietyofapproachesand,asaconsequence,anumberofdifferentwaysofcategorizingparsers(seetable1).Thesecategorizationsprovideuswithawayofexploringthepropertiesofparsers.
HowTheyParse:
Top-Down,Bottom-Up,Wait-and-SeeParser(WASP)
HowTheyExplore:
Backtracking,ParallelParsing
FormalGrammar:
Type0,contextSensitive,ContextGree,RegularGrammar
LinguisticGrammar:
Government-Binding(GB),Lexical-FunctionalGrammar(LFG),StructureGrammar(GPSG)
Table1
Onewayofclassifyingparsersisintermsofhowtheparsingprocedureoperates.Atop-downparserbeginswiththemajorsyntacticunitsofasentence,thentriestofindtheimmediateconstituentsofeachofthese,andsoonuntilthewordunitsarereached.Abottom-upparser,ontheotherhand,triestobuildthestructuresfromthewordleveluptothesentencelevel(seeGrishman1986,27andWinograd1983,90-91).Await-and-see-parser(WASP)doesnottrytobuildamajorcategoryfromthestart,but,asthenameimplies,waitsuntilithastheconstituentsnecessaryformakinganidentification.Inotherwords,forthemostpart,ittriestotaketheguessworkoutofparsing(seeWinston1984,309ffandMarcus1980).
However,evenWASPsmustguessoccasionally,andlikeotherparsers,needtoexploremorethanonesyntacticanalysisbeforedecidingonanappropriateparse.Parserscanbeclassifiedintermsofhowtheyexplorethesepossibilities.Aparserissaidtobacktrackifitexploresonepossiblesyntacticstructureafteranotheruntilitfindstheonewhichisrequired.Parallelparsing,ontheotherhand,meansthattheparserexploresallthealternativesatthesametime(seeGrishman1986,27fandWinograd1983,368-369).
Parserscanalsobeclassifiedintermsoftheformalgrammartypewithwhichtheycanbeidentified(i.e.,canbeconsideredmathematicallyequivalentto).Formalgrammarsaredescribedusing"productions."Theseareruleswhichtakethefollowingform:
A-->B
AruleofthisformisunderstoodtomeanthatAconsistsofB.
28
Classificationintermsofformalgrammartypesrelatestorestrictionsonwhatsymbolscangoontheleftandrightsidesofthearrow.Context-sensitivegrammarsaregrammarsinwhichtherightsideoftherule(theB)mustcontainatleastasmanysymbolsastheleftside(AB-->BCandAB-->BCD,butnotAB-->B),Incontext-freegrammars,theleftsidemustcontainonlyonesymbolandtherightcanhaveanynumberaslongasitisnotsolelycomprisedofthesymbolfor"theemptysentence"(A-->BorA-->BCD,butnotA-->{empty}orAB-->CD).Regulargrammarsareevenmorerestricted.Therecanbeonlyonesymbolontheleftandatmosttwosymbolsontheright,atleastoneofwhichmustbea"terminal"symbol,thatisasymbolwhichcannotappearontheleft.Inaddition,inaregulargrammartheterminalsymbolmustalwaysbeontherightorontheleft(A-->aBorA-->BaandA-->b,butnotA-->aBandA-->Ba,wherelower-caselettersdenoteterminalsymbols).Almostallmodernparsersarebasedoncontext-freeorregulargrammars(althoughtheyareoften"augmented"withadditi