Artificial Intelligence and ComputerAssisted Language Instruction.docx

上传人:b****6 文档编号:10193561 上传时间:2023-02-09 格式:DOCX 页数:17 大小:72.40KB
下载 相关 举报
Artificial Intelligence and ComputerAssisted Language Instruction.docx_第1页
第1页 / 共17页
Artificial Intelligence and ComputerAssisted Language Instruction.docx_第2页
第2页 / 共17页
Artificial Intelligence and ComputerAssisted Language Instruction.docx_第3页
第3页 / 共17页
Artificial Intelligence and ComputerAssisted Language Instruction.docx_第4页
第4页 / 共17页
Artificial Intelligence and ComputerAssisted Language Instruction.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

Artificial Intelligence and ComputerAssisted Language Instruction.docx

《Artificial Intelligence and ComputerAssisted Language Instruction.docx》由会员分享,可在线阅读,更多相关《Artificial Intelligence and ComputerAssisted Language Instruction.docx(17页珍藏版)》请在冰豆网上搜索。

Artificial Intelligence and ComputerAssisted Language Instruction.docx

ArtificialIntelligenceandComputerAssistedLanguageInstruction

ArtificialIntelligenceandComputer-AssistedLanguageInstruction:

APerspective

AlanBailin

UniversityofWesternOntario

Abstract:

ThearticleattemptstooutlinethemajorcomponentsofCALI-AI(computer-assistedlanguageinstructionincorporatingartificialintelligencetechniques).ThearticlebeginsbydiscussingbrieflythecentralassumptiononwhichCALI-AIworkisbased,thatis,thathumancognitiveabilitiescanbereproducedbymechanicalmeans.ItthenproceedstoexaminethefollowingcomponentsofCALI-AI:

(1)naturallanguageprocessing,problemsolving,(3)languagelearning,and(4)modelingteacherbehavior.Thearticleconcludeswithadiscussionofthewaysinwhichlanguageteacherscanparticipateinthedevelopmentofthefield.

KEYWORDS:

artificialintelligence,computer-assistedlanguageinstruction,naturallanguageprocessing,languageteaching.

Introduction

ThisarticleattemptstooutlinethemajorcomponentsofCALI-Al(computer-assistedlanguageinstructionincorporatingartificialintelligencetechniques!

)fromtheperspectiveofhowthesecomponentsareusedatpresentandhowtheymightbeusedinthefuture.Insodoing,ittriestoshowthatCALI-AIhasfeaturesthatdistinguishitfromotherAIapplicationsandthatcanallowittomakeitsowndistinctcontributionsbothtoCALIandtoAI.

ThearticlebeginsbydiscussingbrieflythecentralassumptiononwhichCALI-AIworkisbased,thatis,thathumancognitiveabilitiescanbereproducedbymechanicalmeans.ItthenproceedstoexaminethefollowingcomponentsofCALI-AI:

(1)naturallanguageprocessing,

(2)problemsolving,(3)languagelearning,and(4)modelingteacherbehavior.Thearticleendswithadiscussionofthewaysinwhichlanguageteacherscanparticipateinthedevelopmentofthefield.

HumanCognitionandComputability

TheultimategoalofCALI-AIistomodelinarobustwaythecognitivebehaviorofhumansinaparticularsocialrole:

thatoflanguageteacher.Atleast

25

inthisregard,CALI-AIisnotsimplyanattemptatsophisticatedprogramming.Itis,aboveall,anattempttoachieveatrueAIgoal:

thereplicationbymachineofsignificantaspectsofhumancognitiveabilities.Totestwhetherornotamachinecouldreplicatehumancognitivebehavior,AlanTuringsuggestedthatahumanshouldinteractwithitwithoutanyknowledgeaboutwhetherornots/hewastalkingtoamachine.Ifthehumanbelieveds/hewastalkingtoanotherhuman,themachinecouldbeconsidered"truly"intelligent.ThistestisknownastheTuringTest.

ThetestwouldhavenovalidityinrelationtomanyAIsystemsdesignedforpurelymilitaryorindustrialpurposesbecausethesesystemsdonotreallyaimatsimulatinghumanbehavior.Rather,theyareintendedsimplytoaidinthemakingofpurelytechnicaldecisions(thecorrectmixtureofingredientsinaSoupmix,orthecorrecttechnicalresponsetoincomingmissiles—seeBuchnanan1985forexamples).Ontheotherhand,ifCALI-AIultimatelydoesachieveitsgoal,itshouldbeabletopasstheTuringtest,becauseitwillhavesuccessfullyreplicatedasignificantaspectofhumanbehavior—thatofalanguageteacher.Atrulysuccessfulsystemwouldbehaveinwaysindistinguishablefromthatofahumanperformingthesameteachingfunction.

Wearefarfromachievingthisgoal.CurrentCALI-AIprojectscannotand,intheauthor'sopinion,shouldnotbeusedinplaceofateacher.TheyaretrulyapartofCAI—computer-assistedinstruction.Nevertheless,evenatthisstage,agreatdealofwhatateacherdoescanbereplicatedbymachine.CALI-AIcancheckthesyntaxofastudent'swrittenwork,createenvironmentsinwhichstudentsuselanguageinpedagogicallybeneficialways,andprovidesophisticatedfeedbacktostudentsengagedindrill-and-practiceexercises.

UnderlyingbothCALT-AI'ssmallbutsignificantactualcontributionsanditspotentialcontributionsisthequestionofwhataspectsofhumancognitivebehavioracomputercanreplicate.Inthemostgeneralterms,theansweristhatamachinecanreplicateanyaspectofhumanbehaviorwhichcanberepresentedorsimulatedbycomputationalmeans.Itmustbestressedthat"computational"heredoesnotreallymeaninvolvingnumbers(notatleastinanarithmeticsense).Rather,itreferstoanythingwhichcanbedescribedintermsofa"Turingmachine,"

ATuringmachineisnota"real"machine,butratheranautomaton,thatis,anidealizedabstractmodelofamachine.itisspecificallyintendednotfornumericaloperations(althoughitcanbeusedtocomputethem),butratherforthegeneralmanipulationofsymbols.ATuringmachine(seefigure1)consistsof

26

(1)afinitenumberofstates,

(2)atapeofinfinitelength,(3)afinitenumberoftapesymbols(includingtheblank(B)symbol),and(4)atapehead.Eachtapecellcontainsonlyonetapesymbol,andthetapeheadscansonlyonecellatatime.Themachinecanperformthefollowingkindsofoperations:

(1)itcaneraseatapesymbolonthecellwhichthetapeheadisscanningandreplaceitwithanon-blanktapesymbol,

(2)itcanmovethetapeheadonecelltoeithertheleftorright,(3)itcanchange4)itcan"halt"(thatis,stop)completely(HopcraftandUllman1969,80ffandPartee1978,162ff).

Figure1:

TheTuringMachine

ThebasicassumptionofAIingeneral,andCALI-AIinparticular,isthathumancognition—oratleastasignificantportionofit—canbereplicatedbymeansoftheploddingstep-by-stepmovesofaTuringmachine.UnderlyingCALI-AIthenisnotsomemagician'shocus-pocus,butratherthecareful,preciseanalysisofwhatlanguageteachinginvolves.Whetherornotthebasicassumptionprovestenable,theattempttodevelopCALI-AIshouldleadustoabetterunderstandingofwhatitmeanstoteach.AsweexaminethecomponentsofCALI-AI,thisshouldbekeptinmind.

NaturalLanguageProcessing

Thefieldofnaturallanguageprocessingcanbedividedintothefollowingareas:

syntax,semantic/pragmatics,morphology,speechprocessing,andlanguagegeneration.Below,eachwillbeexaminedinturn,

Syntax

Thetwobasicareasinwhichsyntaxisimportantinnaturallanguageprocessingareparsingandlanguagegeneration.Thissectionconcernsonly

27

parsingbecause,unlikelanguagegeneration,itisanareaofapplicationwherethesyntaxoperatestoalargedegreeindependentlyofothernaturallanguageprocessingcomponents(semantics,morphology,etc.).

Theconsiderableworkthathasbeendoneinnaturallanguageprocessinghasledtoavarietyofapproachesand,asaconsequence,anumberofdifferentwaysofcategorizingparsers(seetable1).Thesecategorizationsprovideuswithawayofexploringthepropertiesofparsers.

HowTheyParse:

Top-Down,Bottom-Up,Wait-and-SeeParser(WASP)

HowTheyExplore:

Backtracking,ParallelParsing

FormalGrammar:

Type0,contextSensitive,ContextGree,RegularGrammar

LinguisticGrammar:

Government-Binding(GB),Lexical-FunctionalGrammar(LFG),StructureGrammar(GPSG)

Table1

Onewayofclassifyingparsersisintermsofhowtheparsingprocedureoperates.Atop-downparserbeginswiththemajorsyntacticunitsofasentence,thentriestofindtheimmediateconstituentsofeachofthese,andsoonuntilthewordunitsarereached.Abottom-upparser,ontheotherhand,triestobuildthestructuresfromthewordleveluptothesentencelevel(seeGrishman1986,27andWinograd1983,90-91).Await-and-see-parser(WASP)doesnottrytobuildamajorcategoryfromthestart,but,asthenameimplies,waitsuntilithastheconstituentsnecessaryformakinganidentification.Inotherwords,forthemostpart,ittriestotaketheguessworkoutofparsing(seeWinston1984,309ffandMarcus1980).

However,evenWASPsmustguessoccasionally,andlikeotherparsers,needtoexploremorethanonesyntacticanalysisbeforedecidingonanappropriateparse.Parserscanbeclassifiedintermsofhowtheyexplorethesepossibilities.Aparserissaidtobacktrackifitexploresonepossiblesyntacticstructureafteranotheruntilitfindstheonewhichisrequired.Parallelparsing,ontheotherhand,meansthattheparserexploresallthealternativesatthesametime(seeGrishman1986,27fandWinograd1983,368-369).

Parserscanalsobeclassifiedintermsoftheformalgrammartypewithwhichtheycanbeidentified(i.e.,canbeconsideredmathematicallyequivalentto).Formalgrammarsaredescribedusing"productions."Theseareruleswhichtakethefollowingform:

A-->B

AruleofthisformisunderstoodtomeanthatAconsistsofB.

28

Classificationintermsofformalgrammartypesrelatestorestrictionsonwhatsymbolscangoontheleftandrightsidesofthearrow.Context-sensitivegrammarsaregrammarsinwhichtherightsideoftherule(theB)mustcontainatleastasmanysymbolsastheleftside(AB-->BCandAB-->BCD,butnotAB-->B),Incontext-freegrammars,theleftsidemustcontainonlyonesymbolandtherightcanhaveanynumberaslongasitisnotsolelycomprisedofthesymbolfor"theemptysentence"(A-->BorA-->BCD,butnotA-->{empty}orAB-->CD).Regulargrammarsareevenmorerestricted.Therecanbeonlyonesymbolontheleftandatmosttwosymbolsontheright,atleastoneofwhichmustbea"terminal"symbol,thatisasymbolwhichcannotappearontheleft.Inaddition,inaregulargrammartheterminalsymbolmustalwaysbeontherightorontheleft(A-->aBorA-->BaandA-->b,butnotA-->aBandA-->Ba,wherelower-caselettersdenoteterminalsymbols).Almostallmodernparsersarebasedoncontext-freeorregulargrammars(althoughtheyareoften"augmented"withadditi

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 人力资源管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1